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Lab Number 0 for

About this lab:

The Most Complex Machine

The Most Complex Machine

Introduction to the Macintosh

The Most Complex Machine: A Survey

of Computers and Computing

The Most Complex Machine

This lab and the software used in it accompany

, an introductory computer science textbook by David Eck

(published 1995 by AK Peters, Ltd., 289 Linden Street, Wellesley, Massachusetts 02181;

ISBN 1-56881-054-7). Support for the text, software and labs is available on the World

Wide Web at http://math.hws.edu/TMCM.html. David Eck can be reached at the e-mail

address eck@hws.edu. This lab is protected by copyright but can be freely distributed for

private, individual use, provided that no charge is made for it other than a reasonable fee

for duplication and media. However, I stipulate that neither this lab nor the software used

in it should be used in a course unless the textbook, , is also

adopted for use in that course.

by David J. Eck

This is an introductory lab which is meant mostly

to introduce you to the use of the Macintosh computer. The Macintosh is

designed to be easy to use, and the programs you will use in this course

are written to require minimal computer expertise. Even if you have never

used a computer before, this lab will teach you most of the general facts you

need to know in order to feel comfortable doing the rest of the labs. If you

already know how to use a Macintosh computer, you probably won't learn

much from this introductory lab; however, there are several good reasons for

you to quickly work through the lab anyway. First, you might pick up a few

useful techniques you didn't know before. Second, you need to know how to

access the software you will use in the labs. And �nally, xSimpleEdit|the

program used in this lab|will familiarize you with some features that it

shares with other programs that you will use in later labs.

You should have a oppy disk containing the software used in the labs,

or, if the software is already stored on the computer system you will be using,

you should know where to �nd it. It will be useful, though not essential, to

have read Chapter 1 of in order to obtain an

overview of how computers really work.



like this

Getting Started:

screen saver

desktop

always

only

then do not
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Shut Down Special

Shut Down Special

Shut Down

You should read through any lab worksheet in advance|not only

will this let you do some planning, but it will often make the lab easier to

do and more meaningful. (Also, you can make note of things you need to do

at the computer; such things are usually written in slanted type, .)

This is especially important for this lab, since in this case if you don't read

the lab in advance you will spend most of your time at the computer just

reading it.

Most of the remaining labs in this book begin

by asking you to start up some speci�c program. It is assumed that you

know where to �nd the programs and how to start them. How you do so will

depend on the exact situation in which you are doing the labs. There are

two major possibilities: Either you carry the programs around with you on

your own oppy disk, or the programs are installed on the computer system

you are using. I will describe the general procedure, but there are many

possible variations, especially if you are using a computer in a computer-

equipped classroom or laboratory. In that case, you might need to �nd out

about local customs. (If you are using the book as part of a course, you

will undoubtably be told what you need to know; if by some chance you are

working on your own, ask anyone who looks like they know what they are

doing.)

First of all, you need to know how to turn your computer on and o�.

Many models of Macintosh can be turned on by pressing a button in the

upper right corner of the keyboard. (In some cases, it might be necessary

to turn on the monitor with a separate switch.) These computers can be

turned o� simply by selecting the command from the

menu. If you don't know anything about menus, don't worry. You will by

the end of this lab.

Other Macintosh models have a power switch located on the front or back

of the machine. (There might be a separate power switch for the monitor.)

The power switch can be used to turn the computer on; to turn it o�, you

should �rst use the command from the menu and

turn o� the power. It is important that you simply turn o� the

power without using the command �rst.

Many computers have a program called a installed that

will either dim the screen or display some changing image after the computer

has been left turned on but idle for some time. This is supposed to prevent

damage to the screen that can result from displaying the same image for too

long. If the screen saver has been activated, you can deactivate it by moving

the mouse.

When you turn on the computer, the screen will display a work area called

the , similar to the one shown in Figure 0.1. The desktop contains



Figure 0.1.
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Introduction to the Macintosh Lab 0, Page 3

File Edit

Apple

A Macintosh desktop, showing several icons, two open windows and

the menu bar. The arrow, which is called the , is used to point to a location

on the screen. Its position is controlled by moving the mouse.

, which are pictorial symbols for information stored on the computer.

An icon can represent a program, a document (also called a or

), a , or a . There is also an icon called the which I will

talk about later. Each icon has a name, which is displayed under the icon.

A folder is a container that can hold programs, documents and other

folders. A disk can also hold programs, documents and folders. A disk is

di�erent from a folder because it is an actual physical object, while a folder

is merely a collection of information stored somewhere on a disk. In addition

to icons, the desktop can display . Windows are used by programs

to display information. There are also \directory windows" that are used to

show what information is stored in a folder or disk. Such directory windows

are the only ones you will see when there is no program running.

Finally, across the top of the screen is the . The menu bar

contains several individual menus, with names such as and . Each

menu contains a selection of commands that can be accessed using the mouse.

The apple on the left of the menu bar also represents a menu, called the

menu. There will probably be other menus represented by single

symbols on the far right of the menu bar. When you run a program, it



Mousing Around:

while continuing to hold the button down

not
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dragging
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Introduction to the Macintosh Lab 0, Page 4

Eject Disk

Special

Try selecting and dragging the disk

icon at the upper right corner of your computer screen

Try opening

and closing some disks and folders. Try dragging things from one folder to

another, then dragging them back. Try throwing something in the trash,

then dragging it out again.

will have its own menu bar containing menus and commands appropriate for

that program. The program's menu bar replaces the usual desktop menu bar

when the program is running.

Now, it is �nally time to do something with

the computer. To use a Macintosh, you need to learn how to use the mouse.

The mouse is used to select items, to open them and to drag them around.

It is also used to choose commands from a menu. There are a lot of di�erent

things to learn here, but most of them are very natural. If you have previous

experience with Macintosh computers, you should already know everything in

this section. If you have used the Windows system on IBM-type computers,

you know most of it, but there are a few di�erences that you will have to get

used to.

To a disk or folder icon or a particular window, just point at it with

the mouse and click the mouse button. The item you select will be

to indicate that it is selected. Clicking is also used for other purposes. For

example, if you click on the small square box found in the upper left corner

of a window, that window will close.

You can move an object around by it. That is, point the mouse

at it, press the mouse button and, ,

move the mouse; release the button when the mouse is at the position you

want. If it's a window you want to drag, you must grab it by the

that runs along the top of the window.

.

You can move an item from one folder or disk to another by dragging

the item and dropping it on the folder or disk to which you want to move

it. If you drag something that's stored on one disk to another disk or to a

folder that is stored on another disk, it will be copied instead of moved. If

you drop a folder, document or program on the trash icon, it will be thrown

away. (If you do this accidentally, you can open the trash by double-clicking

it and drag the item back out of the trash; however, once the trash has been

emptied, you can no longer get it back.) If you drop a oppy disk icon in the

trash, the disk will merely be ejected from the computer and removed from

the desktop; it will be erased. In fact, this|and not the

command in the menu|is the proper way to remove a disk.

You can something by on it. That is, point the

mouse at it and quickly click the mouse button two times. If you double-click

a disk or folder icon, a window will open showing you the contents of the

disk or folder. The window can be closed as described above.

To choose a menu command, point the mouse at the menu name in the



hold it down

Disks and Software:

Try choosing the command from the

menu
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About This Macintosh

Apple Apple

File Quit

Apple About

Help Apple

menu bar. Press the mouse button and . A menu of commands

will appear below the menu bar. While continuing to hold down the mouse

button, move the mouse to the command you want. The command that the

mouse is pointing at will be hilited (unless it is not legal at the moment).

When you release the mouse button, the hilited command, if any, will be

executed.

. (Recall that the menu is indicated by the small apple

symbol at the left end of the menu bar.) This will open a small window

containing some information about the computer you are using.

If you double-click on a program icon, that program will be started up. If

you double-click on a document icon, the program that created that �le will

open and, usually, a window will be opened showing the document. When

a program opens, its own menu bar will appear on the top of the screen. In

almost all cases, there will be a menu containing a command that

can be used to terminate the program. Knowing this much, you should feel

free to try starting up some programs to see what happens. Usually, there

will be things for you to click on and commands for you to try. Generally,

the �rst command in the menu will be called \ something

or other." This command might give some useful information about the

program. Also, look for commands in the menu or in other

menus.

To do the labs in this manual, you need

access to certain programs and data �les. You might have these programs

and data �les on a oppy disk, or they might be installed on the computer

you will be using. I will assume that you know where to �nd this software.

(If you have the software on a oppy disk, insert that disk into the slot on

the front of the computer. An icon for the disk will appear on the desktop.

Double-click on the icon to open it; it might actually open automatically

when you insert the desk. If the software is installed on your computer, you

might have to open one or more folders on the disk to �nd it.)

If you have the software only on a oppy disk, you should make a copy

and keep the original as a backup. If you have your own computer, you can

copy the software onto your computer's hard disk, if it has one. Otherwise,

you should copy it to another oppy disk. If you don't know how to do this,

ask someone or look it up in a Macintosh computer manual.

If you are using software installed on a computer that you don't own,

you will need a oppy disk on which you can keep any �les that you create

during the labs. If you need to buy a disk, buy a \3-1/2 inch double-sided,

double-density" disk. (Don't buy a \high-density" disk unless you know the

computer you will be using can handle it|all newer Macintoshes can, but a

Mac SE or a Mac Plus generally cannot.)



A Simple Program:

formatted

scroll bars

zoom box grow box title bar close box

command-key equivalent

Warning

xSimpleEdit

xSimpleEdit

xSimpleEdit

xSimpleEdit

xSimpleEdit

xSimpleEdit

xSimpleEdit
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Single-sided Double-sided

Double-sided

Open File Open

File

Edit

File Edit

New File New

New

Find the �le Sample

Edit File and open it.

You should

read all this information and experiment with each of these features.

Try selecting the command from the menu

A new disk must be before it can be used. When you insert

an unformatted disk into the computer, a box will appear telling you that

it needs to be initialized. What you need to do will be obvious, except

that in the case of a double-density disk, there will be two buttons labeled

and . You should click on the button labeled

. : Do not initialize a disk that you have previously

used on an IBM-type computer unless you want to throw away all the data

on that disk; a disk can contain IBM data or Macintosh data but not both

at the same time.

For this lab, you need a program named

and a data �le named \Sample Edit File."

There are two ways to do this. If you double-click

on the Sample Edit File icon, then the program will start up

and will open the �le. (The Sample Edit File was created using the program

. The Macintosh remembers this fact, and when you double-click

on the �le, it starts up the program that created it and tells that program

to open the �le.) Alternatively, you can start up the program directly by

double-clicking on the program icon. Once the program is started, you can

use the command from the menu to open a data �le. The

command is discussed in more detail below.

is a very simple text-editing program. It allows you to type

in and edit text, to save the text as a �le and to send the text to a printer.

A similar type of text editing will be used in several programs in later labs.

Although is quite limited and is very far from being useful as

a word-processing program, it does show many of the features common to

Macintosh programs. You will use it to learn about these features.

When you open the �le, a window appears on the screen that looks much

like the one in Figure 0.2. This window displays the information from the

�le. In this case, the window contains information about , the

, the , the and the .

If you

do what the text in the window tells you to do, you will end up by closing

the window.

Next, you should work with to learn the basics of text-editing

and of using menus. Almost every Macintosh program has a menu and

an menu. The commands in these menus can vary somewhat from

program to program, but some commands are used in almost all programs.

The and menus for are shown in Figure 0.3.

. The com-

mand opens up a new, empty window into which you can type some text.

Notice the letter \N" to the right of the word \New" in this menu. This

letter is a for the command. This means



Figure 0.2.

Figure 0.3.
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A typical Macintosh window containing some text to be edited. You

can type text into such a window. You can then edit the text, print it, or save it as

a �le.

The File and Edit menus used in the program xSimpleEdit. The com-

mands in these menus are available in many Macintosh programs.

that instead of selecting the command from the menu, you can simply hold

down the command key on the keyboard and type the letter \N." (The com-

mand key is the key with an apple and/or a cloverleaf symbol on it.) You

should learn how to read menus to �nd out the command-key equivalents

for common commands, since using them is easier than using the mouse to



replace

insertion point

Clipboard

Try typing and editing some text, including opening a second window

and copying text from one window to another
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Cut Copy Paste

Edit

Cut Copy Clear Edit

Cut

Paste

Copy Cut

Clear

Undo

Clear

Redo

Open Save Save As File

Open

select the commands. (This is especially true for the , and

operations in the menu.)

Text editing is easy on the Macintosh. As you type characters, they

appear on the screen at the position of a blinking . You can

move the insertion point with the arrow keys or with the mouse. (To use the

mouse, just click at the position where you want the insertion point.) The

delete key will erase the character to the left of the insertion point.

You can hilite a range of text by dragging the mouse across it. That is,

press the mouse button at some position in the text, then hold the button

down while moving the mouse. Text will be hilited as you move the mouse.

If you move the mouse outside the window, the text in the window will scroll.

Release the mouse button when you are done. Once the text is hilited, you

can use the , and commands from the menu.

The command will remove the hilited text from the window. How-

ever, it will save a copy of the text in a special place called the .

Once some text is in the Clipboard, you can use the command to place

a copy of that text at the current insertion point. Thus, you can move text

from one place to another by cutting it from one place and then pasting it at

a di�erent place. (If some text is hilited when you use the paste command,

the text from the Clipboard will the hilited text.)

You can cut and paste from one window to another and even from one

program to another. After you paste some text, a copy of it is still in the

Clipboard, so that you can paste the same text into several di�erent places

if you want. The command is similar to the command except

that it does not remove the hilited text; it merely puts a copy of it in the

Clipboard so that it can be pasted elsewhere.

The command will remove hilited text from a window without

putting a copy of it in the Clipboard. Hitting the delete key while some text

is hilited will have the same e�ect.

The command is used to cancel the e�ect of the most recent com-

mand or typing. For example, it might be used to \un " text that you

have unintentionally erased. Once the undo command has been applied, the

command in the menu changes to , which can be used to \undo the

undo."

. (The exercises at the end of

the lab will give you more opportunities to do some text editing.)

The , and commands in the menu allow you

to work with �les saved on a disk. allows you to open a �le that

already exists. A new window is opened in which the contents of the �le are

displayed. When you edit the contents of that window, you don't change the

�le itself|just the copy of the �le's contents that is displayed in the window.



dialog box

Figure 0.4.

Introduction to the Macintosh Lab 0, Page 9

Save

Save As

Save New

Save As

Open

To make the changes apply to the �le itself, use the command. If you

want to store the changed text in a new �le, leaving the original unaltered,

use the command. Remember that the changes that you make

don't become permanent until you save them! (Note that the �rst time you

apply to a window that you created with the command, a new

�le will be created, just as if you had used the command instead.)

When you use , you will see a that allows you to choose

the �le you want to open. A dialog box is a special type of window that the

Dialog boxes for opening and saving �les. The boxes you see on your

computer might look di�erent from these if your Macintosh is running \System 6"

instead of \System 7," but the only real di�erence is the method used to move from

one disk to another. In the System 7 boxes as shown, you can click on the Desktop

button and then double-click on the name of the disk you want to select. The Sys-

tem 6 boxes contain a Drive button instead. Clicking on this will move you from

one disk to another; keep clicking on it until you get to the disk that you want.



pop-up menu

xSimpleEdit

xSimpleEdit
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Open

Save As Save

Open

Save As

Open

Print File

Page Setup

Try opening a �le or two

Try entering some text in a new

window, saving that text in a �le, and then reopening that �le.

Try this.

Macintosh uses to ask you a question or allow you to enter information. Once

a dialog box is on the screen, you have to do something to make it go away

before you can do anything else. (Often there is a Cancel button that you

can click to make the box go away and cancel any operation in progress; for

example, when using , click the cancel button if you decide you don't

want to open a �le after all.) When you use |or on a new

window|you get a dialog box that allows you to name the new �le you are

creating and to specify the folder in which it should be stored. The

and dialog boxes are shown in Figure 0.4.

At the top of each dialog box is the name of a folder or disk. Beneath

the name is a scrolling list of the items stored in that folder or disk. (In

the case of the command, a �le will appear in this list only if the

program knows how to open it; for , only �les containing text

will appear.) If you double-click on any folder in this list, that folder will be

opened and will replace the name at the top of the dialog box. The name

at the top is actually a , which can be used to move back up

to folders or disks containing the current folder or disk. (Point at the name

with the mouse and press and hold the mouse button; it should be obvious

what to do.)

When opening a �le, locate the �le you want and then double-click on its

name or click on the Open button. . Feel free to

explore the disk and open �les that look interesting.

When saving a �le, you should make sure that the folder or disk at the

top of the dialog box is the place where you want the �le to go. (If you don't

know which folder the �le is saved in, you might not be able to �nd it again!)

Type a name for the �le into the rectangle at the bottom of the dialog box.

You might have to click in the rectangle �rst, if you don't see the blinking

insertion point there. (Hint: Whenever some text is hilited, if you just start

typing, the hilited text will be deleted and replaced by what you type; there

is no need to get an insertion point and erase the text by hand.) After typing

the name, click on the Save button or just press the return key. (Another

hint: Whenever a button has a heavy border around it, pressing the return

key is equivalent to clicking on the button.)

The other thing that you can do with the text in a window is print it.

Usually, this just requires choosing the command from the menu

and then clicking on the Print button in the dialog box that appears on the

screen.

However, there can be some complications. The print dialog box contains

some options you can set (although some of these will have no e�ect in

). Further options are available in a Page Setup dialog box,

which you will see if you choose the command; if you want to

use this command, you must do so before you print. Finally, before you print



Exercises:

xSimpleEdit

xSimpleEdit

after

xSimpleEdit
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Chooser

Apple

Font Windows

Windows

Windows

Font

Font

Font

Exercise 1: File Edit Windows

Exercise 2:

Copy Paste

Copy Paste

Look at the commands for the , and

menus in . Sometimes the commands are active, and sometimes

they are grayed out and therefore unavailable. Try to �gure out the condi-

tions under which each command is grayed out, and write up your observa-

tions.

Make a �le|not just a window!|containing the line \This

is a stupid �le" repeated 128 times. You only have to type the line once, and

then use and commands. Explain how you made the �le. What

is the smallest number of and commands needed to make the

�le? (You need far fewer than 128.)

successfully, your computer must be connected to a printer and that printer

must be \selected." You can select a printer using the command,

which should be available in the menu. If you need to use the Chooser

and don't know how to do so, ask someone or look in your computer manual.

has two additional menus, a menu and a

menu. When you have several windows open, the menu can be

used to move easily from one window to another. (Of course, you can also

move to a new window by clicking on it, but that only works if at least some

part of the window is visible.) Many of the programs you will use in later

labs have a menu.

The menu controls the appearance of the text displayed in a win-

dow. It is divided into two parts. The upper part controls the size of the

text. (The size is speci�ed in \points." The more points, the bigger the

text.) The current size of the text is checked; when you choose a new size,

the check mark will move. The bottom half of the menu controls the

font, that is, the style of character used to display the text. You can try out

di�erent fonts and di�erent point sizes. Although the other programs you

will use do not have a menu, many of them do have similar menus that

you will use to select one option from among several.

There was a lot to learn in this lab, especially if you have not used

the Macintosh before. You should continue to work until you feel reasonably

comfortable with the computer and with the program. Also, try

running other programs that are available to you. You should �nd that you

can �gure out a lot about how to use them, since most Macintosh programs

work in similar ways.

This lab ends with a number of exercises for you to work

on, think about and write up. You should do them you have gained

experience with Macintosh computers by working through the lab. Some of

them require further work on the computer. Your responses might be part

of a lab report, if you are doing this lab as part of a course.



consistent user

interface
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Exercise 3:

Exercise 4:

Explain in detail how you could make a new �le containing

just the last paragraph from the �le Sample Edit File used in this lab (without

retyping the paragraph!). There are at least two essentially di�erent ways to

do this. Try to think of both of them.

The Macintosh is designed to have a

. This means that most programs work in the same way, so that

much of what you learn about one program also applies to other programs.

Discuss several examples of this that you have seen during your exploration

of the Macintosh in this lab. Why is a consistent user interface is useful?
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Lab Number 1 for

zero one

one

zero

Data Representation

The Most Complex Machine

The Most

Complex Machine

really

About this Lab:

Background: Bits, Bytes, Etc:

The Most Complex Machine: A Survey

of Computers and Computing

The Most Complex Machine

This lab and the software used in it accompany

, an introductory computer science textbook by David Eck

(published 1995 by AK Peters, Ltd., 289 Linden Street, Wellesley, Massachusetts 02181;

ISBN 1-56881-054-7). Support for the text, software and labs is available on the World

Wide Web at http://math.hws.edu/TMCM.html. David Eck can be reached at the e-mail

address eck@hws.edu. This lab is protected by copyright but can be freely distributed for

private, individual use, provided that no charge is made for it other than a reasonable fee

for duplication and media. However, I stipulate that neither this lab nor the software used

in it should be used in a course unless the textbook, , is also

adopted for use in that course.

by David J. Eck

All the di�erent types of information in a com-

puter are represented by strings of just two basic symbols: zeros and ones.

The same string of zeros and ones can represent many di�erent items of

data|it all depends on how it is interpreted. In this lab, you will see the

same string of thirty-two bits interpreted in six di�erent ways. You will

also learn something more about the \feel" of using a Macintosh computer

program.

The topic of data representations is covered in Section 1.1 of

. The relevant material is reviewed here, but it would be

very useful to have read that section for more perspective about what is

going on.

The fundamental unit of

information is a . A bit is a quantity that can take on either of the two

values or . By taking on one of these two values, it can represent

\information" by answering a single yes-or-no question, with the value

meaning \yes" and meaning \no." Of course, for it to represent
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Quit File

information in the usual sense, you have to know what question is being

answered. The \question that is being answered" is the of

the bit. The same bit can have almost any meaning, depending on how it is

interpreted.

By stringing together a sequence of bits, we can represent more than just

two possible values. A string of two bits can represent four possible values,

corresponding to the bit-patterns 00, 01, 10, and 11. The values might

be the numbers 0, 1, 2, and 3; or they might be the four di�erent things

that can occupy a square in a game of checkers: red piece, black piece, red

king and black king; or, they might have any one of inde�nitely many other

interpretations. Again, the meaning depends on the interpretation.

A string of eight bits is called a . A byte has 2 |that is 256|

di�erent bit-patterns. These 256 di�erent bit-patterns can be used to encode

256 di�erent values. In one common application, the bit-patterns are used

as codes for letters, digits and other characters. Although such an encoding

could be done in many ways, the most common association of bit-patterns

to characters is the , which is used in most computers.

By stringing together bits (and keeping their interpretation straight!) we

can represent any data that the computer might have to deal with. In this

lab, you will look at just six of the possible interpretations of a string of

thirty-two bits. The interpretations considered here are, in a sense, built

into the design of the computer itself. For example, the computer can|

under the direction of a program|take a thirty-two bit value from a certain

memory location and treat it as an , that is a positive or negative

whole number. The computer can do things with that string of bits that are

appropriate things to do with an integer, such as add it to another number

or divide it by seventeen. It can also display the integer on its screen in

standard \human-readable" form.

The six interpretations you will see for a string of thirty-two bits are: a

binary number, an integer, a hexadecimal number, a real number, a string

of four characters and an eight-by-four grid of pixels. You should remember

that you will be looking at string of thirty-two bits interpreted in

di�erent ways. You should also remember that the same bit-patterns could

be interpreted in other programs in an endless variety of ways: as a bar

of music, or the chemical ingredients in a bar of soap, or your tab at your

favorite bar, or .

To begin the lab, start up the program ,

which you will �nd in the folder named \Files for Lab 1." You will see a

window like that in Figure 1.1, but with di�erent values in the rectangular

boxes. This is a very simple program, with just one functional command|

in the menu. (You can also quit this program simply by closing

the window.)
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Window from the program Data Reps. The window displays six values

of di�erent types, but each value is represented in the computer by the same thirty-

two bits.

The window contains six rectangular boxes, labeled with the type of data

each contains. The �rst �ve boxes are . Many Macintosh

programs use text-input boxes to allow you to type in data to be used by

the program. Some Macintosh hints: If all or part of the contents of a

box are hilited, you can simply start typing to erase and replace the hilited

characters. If a box contains a blinking insertion point, anything you type

will be inserted at that that point. You can move the insertion point with the

arrow keys or by clicking with the mouse at the new location. To move the

insertion point to a di�erent text-input box, just click in that box. (Actually,

the easiest way to move from one text box to another is to press the tab key;

this will hilite the contents of the next box so that you can just start typing

the new value.)

You might �nd that you are only allowed to type certain characters into

a text-input box, or that the number of characters or the contents of the

box are restricted in some other way. In the program , when you

violate one of these restrictions, the computer will beep at you. (Most of

the restrictions are obvious; for example, the box labeled \Binary" can only

contain the binary digits 0 and 1.)

The sixth box in the window, labeled \Graphics," is not a text input box.

This box is divided into an eight-by-four grid of small squares which can be

either black or white. Each of the thirty-two squares corresponds to one of

the bits in the binary number. The square is white if the corresponding bit

is 0 and is black if that bit is 1. If you click the mouse on one of these squares,
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The Binary Box.

The Integer Box.

The Hexadecimal Box.

Try changing the contents of each of the six boxes in the window.

Click on each button to see

its e�ect.

Type in some integers and observe the bit-patterns

that represent them. Include some negative numbers. Can you say anything

about how negative numbers are represented?

it will change from black to white or vice versa. If you click and drag, you

can change several squares at once. This is the easiest way to change speci�c

bits in the number.

Note

that as soon as you make any change, the contents of all the other bases are

changed as well. This is because each box is really displaying the same string

of thirty-two bits, interpreted in di�erent ways.

The three in the lower right corner of the window provide an-

other way to change the contents of the boxes.

The button named \Random" will produce a di�erent bit-pattern

each time it is pressed.

Here is a description of what you are seeing in each of the

six boxes in the program window, along with some suggested

exercises. Note that you are certainly expected to learn all the details of

the di�erent representations. The important idea here is just that di�erent

representations are possible.

This is the most direct display of the thirty-two bit

binary number, showing a zero or one to represent each individual bit. If

you type fewer than thirty-two bits in this box, the computer will �ll in with

extra zeros on the left.

A binary number can be interpreted as a positive

integer (0, 1, 2, 3, 4, ) in a natural way, as explained in Section 1.1 of

. Representing the negative integers ( 1, 2,

3, ) is trickier. However, it is always true that a binary number whose

leftmost bit is 1 represents a negative number. This is explained in Subsec-

tion 2.2.3 in the text.

It is di�cult (for humans) to read long

strings of zeros and ones. Hexadecimal numbers are a kind of shorthand

for writing such strings. A hexadecimal number is written using the sixteen

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F. The letter

A stands for 10, B for 11, and so forth. A hexadecimal number is a number

written in the \base 16," just as ordinary integers are in the \base 10" and

binary numbers are in the \base 2." For example, the hexadecimal number

2B7 would be written in decimal as:

2B7 = 2 16 + 11 16 + 7 16

= 2 256 + 11 16 + 7 1

= 695
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The Real Box.

Test this correspondence by entering some hexadecimal numbers and ob-

serving how they translate into binary.

The representation of a non-zero real number as a string of thirty-

two bits. Special bit patterns are used for the number zero, as well as for the values

in�nity and minus in�nity. The representation has three parts: a \sign," an \ex-

ponent," and a \mantissa." In the binary number system, a mantissa consists of

a 1, followed by a decimal point, followed by a string of zeros and ones; in the rep-

resentation used for real numbers in a computer, the 1 before the decimal point is

omitted, and only the bits following the decimal point are represented. The eight-bit

exponent is used in a rather odd way: First of all, if all eight bits of the exponent

are 1's and if all the other bits in the number are 0's, then the corresponding real

number is \in�nity"; \minus in�nity" is obtained from this by turning on the left-

most bit. Aside from these cases, the eight bits represent a power of two; the power

is given by converting the eight-bit binary number to decimal and then subtracting

127. For example, 01111111 represents the power 0; 10000000, the power 1; and

01111110, the power 1.

The conversions from hexadecimal to binary and vice versa are much eas-

ier. Each hexadecimal digit corresponds to a string of four binary digits ac-

cording to the rules 0 = 0000 , 1 = 0001 , 1 = 0010 , 3 = 0011 , ,

F = 1111 .

In mathematics, a real number is one that can include

a decimal point and any number of digits|even an in�nite number|after

that decimal point. On a computer, there is a limit on the number of dig-

its that can be represented, so that real numbers can only be represented

approximately. In , if you type in more digits than can be repre-

sented, the extra digits will be ignored and will be erased when you move

to another input box. (If you type more than about eight digits in the Real

box, you will notice that the entries in the other input boxes stop changing.)

The representation for real numbers is complicated by the fact that real

numbers can be written in . In standard scienti�c nota-

tion, a number can be multiplied by a power of ten. For example, 3 75 10

means 3.75 times 10000, or 37500, since ten raised to the fourth power is

10000. On a computer, 3 75 10 is written as 3.75e4. The \e4" means

\times 10 raised to the exponent 4." This notation is used in the Real input

box in the program .
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The Ascii Box.

The Graphics Box.

Exercise 1:

Exercise 2:

Exercise 3:

Exercise 4:

The bit patterns used to represent real numbers are quite complicated.

They are based on a binary-number version of scienti�c notation in which

powers of two are used instead of powers of ten. Some strings of bits don't

even represent legal real numbers; such bit strings are shown as \(invalid)"

in the Real input box. There is even a special bit pattern that is assigned

to represent in�nity (denoted \INF" in the real box). Some of the details of

the representation are explained in Figure 1.2.

With eight bits needed for each character, a thirty-

two-bit binary number can represent a string of four characters. Some of

the possible characters, such as the tab character, are \non-printing." Such

characters are drawn in as small squares.

This is explained above.

Type in some real numbers and observe the bit patterns that represent

them. (Don't worry about all the details of the representation; they are not

important.) Check that turning on the leftmost bit will change a positive

number to its negative. Make the numbers INF and INF, based on the

description in the caption of Figure 1.2.

Try typing in some

words to see what numbers they correspond to. Note that each character

corresponds to a two-digit hexadecimal number. Why?

Try drawing some

pictures, to see what letters or numbers the bit-patterns represent.

Use the program to �nd out which character has

ASCII code 120. Use the program to �nd the ASCII code of the character `@'.

To do the latter, start with \All Zeros" and then replace the last character

in the ASCII Code box with @. What happens if you just type @ by itself

into the ASCII box? Why?

Type the following integers into the Integer input box, and

observe the corresponding pictures in the graphics box: 1, 2, 4, 8, 16, 32,

256, 4096, 65536. What pattern do you see in the pictures? Explain

these numbers produce this pattern.

Type a four-letter word, such as \TIME," into the ASCII

Code text input box of the program . Then, in the graphics box,

turn the bits on and o� in the third column from the left. What have you

discovered about the of the third bit from the left in the eight-bit

ASCII code of a letter?

You could type \1000" into any of the �ve text input

boxes. Explain carefully the meaning of this string of symbols when it is

typed into each box. How is it possible that the same string of symbols can

have di�erent meanings in di�erent circumstances? (Recall the de�nition of

a \symbol.")
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Inside a working computer, the interpretation of a given string of bits has

to be kept straight by someone or something. At this point, you don't know

enough about computers to understand exactly how this is done, but you

might be able to make some good guesses. Try it! Think about the analogy

with information stored in books.
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adopted for use in that course.

by David J. Eck

It is possible in theory to construct a computer

entirely out of transistors (although in practice, other types of basic com-

ponents are also used). Of course, in the process of assembling a computer,

individual transistors are �rst assembled into relatively simple circuits, which

are then assembled into more complex circuits, and so on. The �rst step in

this process is to build , which are circuits that compute basic

logical operations such as , and . In fact, once , and

gates are available, a computer could be assembled entirely from such

gates. In this lab you will work with (simulated) circuits made up of ,

and gates. You will be able to build such circuits and see how they

operate. And you will see how simpler circuits can be combined to produce

more complex circuits.

This lab covers much of the same material as Chapter 2 in

. The lab is self-contained, but many of the ideas covered

here are covered in much more depth in the text, so that it would be useful

for you to read Chapter 2 before doing the lab.

Remember that you should read through the lab worksheet in

advance of starting a lab. In addition to exercises for you to do, the lab
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Find the data �le , and open it. (It should be in a folder

named .) On the screen, you will see the window shown in

Figure 2.1. Try turning the inputs on and o� to check that the gates have

the correct behavior for all possible inputs.

Open the �le named . Play with its inputs and try to

discover the rule that determines the output in terms of the input. The

name of the circuit is a hint.

worksheet contains background material for you to read, and you should not

have to spend your time at the computer reading this material.

A logic gate is a simple circuit with one or

two inputs and one output. The inputs and outputs can be either or ,

and the value of the output is completely determined by the values of the

inputs (with the proviso that when one of the inputs is changed, it takes

some small amount of time for the output to change in response). Each gate

does a simple computation. Circuits that do complex computations can be

built by connecting outputs of some gates to inputs of others. In fact, an

entire computer can be built in this way.

Circuits are drawn using standard symbols for , , and gates,

as shown in Figure 2.1. This �gure shows a window from , the

program that you will use in this lab. The window shows a \circuit board"

containing an gate, an gate, and a gate. Each gate has one or

two inputs and one output, with the inputs on the left and the output on

the right.

In , a circuit board window is used as a base on which you

can construct complex circuits from simpler components. The circuit board

has eight input leads on the left and eight output leads on the right. These

can be connected to the inputs and outputs of the circuit components. Every

input or output can be either ON or OFF. You have control over the inputs

on the left of the circuit board; just click on the word ON or OFF on the left

of the screen to change it. Aside from these inputs, which you control, all

the other values are determined by the simple rules that govern the behavior

of gates. These rules are explained in and are

summarized by the following tables:

AND gate:

OFF OFF OFF

OFF ON OFF

ON OFF OFF

ON ON ON

OR gate:

OFF OFF OFF

OFF ON ON

ON OFF ON

ON ON ON

NOT gate:

OFF ON

ON OFF

This all becomes more interesting when we start building more complex

circuits.
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and or not

Now, there is a branch of mathematics called that is

intimately connected with logic circuits such as . Boolean algebra

studies expressionsmade up of letters|representing inputs that can be either

or |and the operators , and . For example, here are

some expressions of Boolean algebra:

At the top of this �gure is a window from the program xLogicCircuits,

showing the circuit stored in the �le . This circuit contains, from top to

bottom, an gate, an gate and a gate. Inputs to the circuit are shown

along the left edge of the window; outputs along the right edge. Inputs can be turned

on and o� by clicking on the word ON or OFF. Circuits are constructed by dragging

gates and other components from the bottom of the window into the circuit and then

drawing lines to represent wires. Below the window are , , and gates

shown in all their input/output con�gurations.
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As a warm-up exercise, use to construct the circuit that

computes . Then use your circuit to make a table of

the value of this expression for each of the eight possible combinations of

inputs.

Majority

xLogicCircuits

source

You must position the cursor carefully over the endpoint of an input wire;

again, the cursor changes to a plus sign when it is in a legal position.

xLogicCircuits

( )

( ( )) ( )

( ) ( )

Like logic circuits, such expressions represent computations. Once the

values of the inputs are known, an output value for the expression can be

computed according to the laws of logic. In fact, if we associate the logical

value with \ " and the logical value with \ ," then the same

computation can be done by a properly wired logic circuit. Each di�erent

letter in the expression corresponds to an input wire for the circuit, and the

expression serves as a blueprint for building the circuit.

For example, the simple expression ( ) corresponds to the

circuit:

The circuit that you looked at previously corresponds to the more

complicated expression: ( ) ( ) ( ). (The text

discusses the correspondence between Boolean algebra and logic circuits in

more detail.)

To create a new circuit with ,

you should start with the command to get an empty circuit board.

Drag gates from the strip along the bottom of the screen onto the circuit

board. To draw a connecting wire, move the mouse to the of the wire

you want to draw. (The cursor will change from an arrow to a plus sign

when it is at a legal position.) Press the mouse button; hold it down while

you move the mouse; and release it at the other endpoint of the connection.

While drawing a connecting wire, you can leave a little black dot along

the way by quickly releasing and pressing the mouse button. These dots

represent \junctions" that can themselves be used as sources for connections.

If you make a mistake, you can use the Undo command from the Edit menu to

undo it, provided you do so immediately. (Undo can only undo one action.)

To protect yourself against bigger mistakes, you should save your circuit

frequently. Then, if you make a major mistake, you can open the saved

version and discard the version on the screen.

( )

Try building more complicated circuits. (Exercise 1, below, has

other Boolean algebra expressions for you to work on.)
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Three-bit Add

Three-bit Add

Full Adder

Full Adder

Full Adder Half Adder

Half-Adder

Start another new circuit. Use the command to add the

circuit to the component strip. (The command works much like the

command.) Then drag a copy of the circuit onto the circuit

board. Use this as a basis for building a \ circuit," that is, a circuit

with exactly the opposite behavior from the (All you have

to do is add a gate and some wires.)

Check that the three-bit addition circuit gives the correct answer for each

In order to have circuits that

display \structured" complexity, it is important to be able to build on previ-

ous work when designing new circuits. Once a circuit has been designed and

saved, it should be possible to use that circuit as a component in a more com-

plex circuit. The program allows you to do this. The

command from the menu is used to add a previously-created circuit to

the strip of components along the bottom of the circuit board. From there,

it can be dragged onto the circuit board like any other component.

To see a more useful example of constructing circuits from sub-circuits,

open the �le . This is a circuit that can add binary numbers.

Previously in this lab, we have considered the inputs and outputs of a circuit

to have the values and or else the values and . When a

circuit is meant to work with binary numbers, the values 1 and 0 are used

instead, with standing for 0 and standing for 1.

The circuit adds two three-bit binary inputs. (See Fig-

ure 2.2.) Examples of such sums are:

001

+ 001

0010

111

+ 001

1000

010

+ 101

0111

011

+ 110

1001

111

+ 111

1110

As in ordinary addition, each column is added separately, from the right to

left, with a possible \carry" from one column to the next. The rules for

adding columns of three bits (including a carry from the previous column)

are 0 + 0 + 0 = 00 , 1 + 0 + 1 = 10 , 1 + 1 + 1 = 11 , and

so forth. When three-bit numbers are added, the answer contains four bits,

since there can be a carry from the leftmost column.

The structure of the addition circuit reects the structure of the problem

it solves. When binary numbers are added by hand, they are added one

column at a time, using the same procedure for adding each column; a circuit

that does the addition contains several identical subcircuits, and each of these

subcircuits does the sum for one column. The sum for each column is done

by a subcircuit, which adds two digits from the input numbers

and a carry digit from the previous column. (See Section 2.1 in the text.

If you want to see the inside of , a �le containing that circuit is

available. A is made from two circuits, and a �le

containing a is also available to you.)
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Introduction to Feedback Loops:

Clocks Simple Memory

Clocks

Clocks

feedback loop

memory circuits

delay

of the example sums given above. Make sure that you understand how the

circuit is used and how it could be extended to add numbers with more bits.

Open the �le .

You

might want to try similar circuits with di�erent delay times.

The circuit Three-bit Add has six inputs and two outputs. The inputs,

arranged into two groups of three, represent two three-bit binary numbers. These

numbers are written from top to bottom with ON representing 1 and OFF represent-

ing 0, so that in this example the two numbers being added are 110 and 011. The

four outputs represent the three-digit sum of the two input numbers and the carry-

out from the leftmost column. Here, the sum is computed correctly to be 001 with a

carry of 1.

If the output of a gate

is used as input to that same gate, either directly or through a sequence of

other gates, the result is called a . Circuits with feedback

loops do not have the nice relationship with Boolean algebra that exists for

circuits without feedback loops. However, feedback is absolutely essential for

building that can store values. In this section of the lab,

you will look at two kinds of circuits with feedback loops. The circuits are

in the �les and .

It contains two very simple circuits. One consists

of a single gate with its output connected to its input. This circuit

rapidly oscillates between being on and o�. (The behavior of this circuit is

discussed in the answer to Question 5 in Chapter 2 of the text.) The other

circuit includes a component, that simply delays the signals passing

through it by a certain �xed amount. This slows down the oscillation.

Do you see why

the name of this �le is ?
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Exercise 1

not not and not

and and or not

not or or and

Exercise 2

Exercise 3

Output

Next, open the �le . This �le contains the circuit from

Figure 2.14 of the text. This circuit has a feedback loop that can store either

a zero or a one. If you turn the �rst input to this circuit and then back

, the output will stay on. The circuit is \remembering" the value one.

If you turn the second input and , the output will turn , and the

circuit remembers the value zero. Essentially, the circuit remembers which

of its inputs was most recently turned . !

You should be able to do most of the following exercises

after working through the lab. (If you plan your lab time in advance, you

might �nd it more natural to work on some of these exercises as you work

though the lab.) However, in some cases (especially Exercise 5), you will

need additional help from . Note that Exercises 1

and 3 can be done with or without a computer.

:

(( ) ( ))

( ) ( )

( ( )) ( )

:

:

Try it

Build circuits to compute each of the following expressions

of Boolean algebra. You can build them all on one screen if you want. Make

a printout or drawing of the result.

In the previous exercise, you went from logical expressions

to circuits. It is also possible to go in the other direction. That is, given

a circuit that does not contain feedback loops, it is possible to describe its

output as a logical expression of its inputs. Open the �le named

. Assuming that its three inputs are named , , and , �nd

the expression that describes the output in terms of the input. Then do the

same with the �le , assuming that its inputs are , , ,

and . Explain in words how you got your answers.

One of the major points of Section 2.1 of the text is

that Boolean algebra can be used to build a circuit with any speci�ed in-

put/output behavior. Construct a circuit with the following speci�cation:

To apply the method given in the text, your �rst step should be to write

down a Boolean algebra expression corresponding to this table.
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Exercise 4.

Exercise 5

Include

Three-bit Add Three-bit AND

Three-bit Add Three-bit AND

Hidden ALU

Three-bit Add Three-bit AND

Three-Bit Add Three-Bit AND

Make a printout or drawing of your circuit.

Explain why the ability to make and use subcircuits is so

important for the construction of complex circuits.

The �nal exercise of this lab is to construct a mini-ALU.

This is not a trivial exercise, and you should not be surprised if you have to

ask for some hints.

As explained in Chapter 2 of the text, the purpose of an ALU is to do

basic arithmetic and logical calculations. The ALU is constructed so that it

actually does all of the computations all the time; control wires are used to

control which of the answers gets through to the output wires of the ALU.

(See Section 2.2.6 of the text.)

For this exercise, you should construct a mini-ALU that can compute

either the sum or the logical- of two three-bit binary numbers. That is,

you want a circuit that can imitate either the addition circuit from the �le

or the circuit from the �le . Your mini-ALU

will have eight inputs and four outputs. The �rst three inputs represent one

three-bit number to be used as input for the ALU's computation. The next

three inputs represent the second three-bit input to that computation.

The seventh and eighth input for your ALU control which answer will be

output|the answer from or the answer from .

If input seven is on and input eight is o�, the ALU should output the three-

bit sum of the two input numbers and the carry-out from the addition. If

input eight is on and input seven is o�, the ALU should output the three-bit

logical- of the two input numbers; in this case, the fourth output should

be o�.

The �le contains a circuit that works in this way, but you

can't see what's inside, so you will have to make your own. Start with the

two existing circuits and . (Add them to the

circuit using the command and then drag them onto the circuit

board.) Your problem, then, is to add the gates and wires that are needed

to complete the ALU. The circuitry necessary to compute the output (for a

much more complicated ALU) is discussed in Section 2.2.6.

The easiest way to do this exercise is to write down a Boolean algebra

expression for each output wire. The expression should describe when the

wire should be turned on, in terms of the seventh and eighth inputs to the

ALU and the outputs of the and circuits.

(The expressions for three of the output wires are essentially identical; the

fourth is simpler.)

Make a printout of your �nished circuit.
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This lab and the software used in it accompany

, an introductory computer science textbook by David Eck

(published 1995 by AK Peters, Ltd., 289 Linden Street, Wellesley, Massachusetts 02181;

ISBN 1-56881-054-7). Support for the text, software and labs is available on the World
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address eck@hws.edu. This lab is protected by copyright but can be freely distributed for

private, individual use, provided that no charge is made for it other than a reasonable fee

for duplication and media. However, I stipulate that neither this lab nor the software used

in it should be used in a course unless the textbook, , is also

adopted for use in that course.

by David J. Eck

This lab looks at circuits that can be made when

feedback loops are allowed. The primary use for circuits with feedback is in

. In this lab you will see how complex memory circuits

can be built up starting from a simple one-bit memory. You will construct

multi-bit registers and an addressable memory that stores several numbers

in a sequence of numbered locations.

This lab is based on Sections 2.3 and 3.1 of .

It will be useful for you to be familiar with this material before you begin

the lab.

When circuits are allowed to contain feed-

back loops, then circuits can be built that have an . The

output of such a circuit depends not just on the values of its inputs but also

on its internal state. The state is a kind of memory|it allows the output

of the circuit to depend on what happened in the past, not just on what is

happening now.
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Data-out

Load-Data

Data-in

Load-Data

Data-in Load-data

Load-data

Load-data

Data-in Load-data

The Most Complex Machine

One-bit

memory

One-bit memory

One-bit MemoryOpen the �le so

that you can get some hands-on experience doing so.

Try storing values in the one-bit memory circuit. Verify that switching

on and o� has no e�ect as long as is o�. If you are not

A one-bit memory circuit. The output value represents a number

(0 or 1) stored in the circuit. The output wire is named . The two inputs

on the left are used when a value is to be stored. The top-left input is the

wire, while the bottom-left input is . In e�ect, the one-bit value stored in the

circuit is actually held in the feedback loop at the right. This loop will remain in

one of two stable states as long as the wire is kept turned o�.

It particular, it is possible to build a one-bit memory circuit, as explained

in Section 2.3 of . This circuit is shown in Fig-

ure 2.15 of the text, and a functionally identical circuit from the �le

is shown in Figure 3.1 in this lab worksheet.

Assuming that both its inputs are , the circuit can

be in one of two states. The state it is in depends on which value, 0 or 1,

was most recently stored in the circuit. The stored value can be read on the

output wire of the circuit.

If you are to understand the rest of this lab, it will be important that

you understand exactly how to use this circuit, that is, how to store values

in it and how to read the stored value.

Note that the bottom

wire on the left is used to specify a value to be stored in the circuit. That

value is stored by turning the top input wire and back . These two

input wires are called, respectively, and . The value stored

in the circuit is safe as long as the wire is kept turned o�. (That

is, the state of the circuit can change only when the wire is .
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A Multi-bit Memory:

Addressable Memory:

The Most Complex Machine

Full Adder

Hidden 3-bit Register

di�erent

Hidden 16-location Memory

clear on the details, consult Subsection 2.3.1 in .

As a simple exercise, change the stored value to 101 .

Open the circuit

Data-in Data-out Load-

data

Data-in Data-out

Load-data Address

Address

Data-in Data-out Load-data

Address

Data-out

Data-In Load-Data

Address

With the one-bit memory as a starting

point, you can build more complex memory circuits. Just as you can line up

three circuits to get a three-bit addition circuit, you can combine

one-bit memory circuits to get a -bit memory. Such -bit memories are

used as components in central processing units. A -bit memory that is part

of a CPU is called a .

If you open the �le , you will see a three-bit memory

(with its internal construction hidden). This circuit is used exactly like a one-

bit memory, except that it stores a three-bit number instead of a single bit. It

has three wires and three wires, but has only a single

wire. When you open the �le, you will see that the circuit currently

stores the value 011 .

Exercise 1 at the

end of the lab asks you to construct a three-bit register.

The main memory circuit of a computer

is made up of a large number of -bit memories. Each -bit memory is called

a in the main memory, and each location has an assigned number,

called its . For the model computer introduced in Chapter 3 of

the text, for example, main memory consists of 1024 sixteen-bit locations.

Modern computers generally have millions of locations, each holding an eight-

bit number.

In this section of the lab, you will construct a four, eight, or sixteen-

location memory, depending on how far you want to carry things. Each

location will hold a three-bit number; in fact, each location will actually be

a \three-bit register" of the type you have just been looking at. (Properly

speaking, the circuit here should be called a \three-bit memory" instead of

a \three-bit register," since it's not being used as part of a CPU. But that

is really beside the point.)

The memory circuit will have three wires, three wires

and one wire. In addition, it will have one or more wires.

The purpose of the wires is to pick out one particular location in the

memory. The , and wires apply only to that loca-

tion. As long as the wires have some particular value, the memory

circuit behaves identically to a simple three-bit memory; it will be possible

to read the value in that memory by looking at the wires or to

store a value using the and wires. However, changing the

value on the wires will make the memory circuit behave as a

three-bit memory, which independently stores a di�erent three-bit number.

. This circuit can store a

three-bit number in each of 16 locations. It therefore contains 48 one-bit
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A 16-location memory circuit. The four address wires make it possible

to access , or sixteen, locations.

One important aspect of the complexity of this circuit is

the time it takes to operate.

The Most Complex Machine

2-location 3-bit RAM Three-bit Select

2-location 3-bit RAM

Try out this circuit, testing how it can be used to store a value in a

location and then to retrieve that value at a later time.

Open the �le . Experiment with the circuit. Make

sure that you understand how to use it to store and retrieve values in its two

memory locations. Make sure that you understand how it works, especially

how its address wire is used to select between the two locations.

memories, plus all the extra circuitry necessary to support the operation of

the address wires.

For example, when you change the values on the

wires, it will take a few seconds until the value on the wires

will change. Similarly, when you want to store a value in the circuit, you will

have to wait several seconds from the time when you turn on the

wire before you turn it o� again. (On slower computers, the time you have

to wait can be unpleasantly long, but failure to wait the necessary time can

have surprising e�ects, such as putting the circuit into an oscillating state

where the outputs blink on and o�.)

Exercise 2, below,

contains some speci�c exercises for you to do with this circuit.

As for actually building this memory circuit, we can proceed one address

wire at a time, as explained in Section 3.1 of .

The �rst step is to combine two three-bit registers into a memory circuit that

has only two locations (numbered zero and one), and one address wire. This

circuit is in the �le . The subcircuit, ,

that it uses is also available in a �le. You will need to include copies of each

of these �les as subcircuits in the circuit that you build.

The next stage in building the memory is to take two copies of this two-

location memory and combine them to make a four-location memory. The

new circuit will have two address wires. One of the address wires simply
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Exercise 1:

Include

Exercise 2:

Hidden 3-bit Register

One-bit Memory

One-bit Memory

Hidden 16-bit Memory

A two-location memory, in which each location stores three bits. The

subcircuit Three-bit Select selects between the outputs of the two registers. If the

wire is o�, then the output of the Select circuit is equal to the output of the top

register; if is on, then Select lets the output of the bottom register through

instead.

connects to the address wires of the two-location memories; the other selects

between the two two-location memories in the same way that the single

address wire in Figure 3.3 selects between the two registers. In fact, the

design of the four-location memory is very similar to the design of the two-

location memory. (See Figures 3.2 and 3.3 in Chapter 3 of the text; you

might need to refer to these �gures for help with Exercise 3 below.)

Construct a three-bit register that functions in the same

way as the that you looked at earlier in the lab. Start

with a new circuit and include the circuit using the

command. Drag three copies of the onto the circuit board.

The wire of the three-bit register should connect to the

wires of all three one-bit memories. Make a drawing or a printout of your

circuit.

Open the �le . (If it already open,

reopen it so that it is in its original state.) By manipulating the

wires, read the values stored in locations 1001, 0111, and 0100 of the memory

circuit. Record your answers. Change the value stored in location 1001 to
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Exercise 3:

Exercise 4:

Three-bit Select 2-location 3-bit

RAM

Three-bit Select

111. Explain exactly what steps you used to read and to store values in this

circuit.

Build a four-location memory, as described above. Start

with a new circuit and include copies of and

. If you like and if you have time, you can go on from there to build

an eight-location and even a sixteen-location memory. Save your circuit in a

�le.

Determine exactly how many logic gates of each type

( , and ) are contained in the 16-location memory circuit. You

will have to do some thinking and some work. Start by opening some circuits

(like ) to �nd out how many gates they contain.)
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This lab and the software used in it accompany

, an introductory computer science textbook by David Eck

(published 1995 by AK Peters, Ltd., 289 Linden Street, Wellesley, Massachusetts 02181;

ISBN 1-56881-054-7). Support for the text, software and labs is available on the World

Wide Web at http://math.hws.edu/TMCM.html. David Eck can be reached at the e-mail

address eck@hws.edu. This lab is protected by copyright but can be freely distributed for

private, individual use, provided that no charge is made for it other than a reasonable fee

for duplication and media. However, I stipulate that neither this lab nor the software used

in it should be used in a course unless the textbook, , is also

adopted for use in that course.

by David J. Eck

This lab introduces the program ,

which simulates the simple model computer|also called xComputer|that

is discussed in Chapter 3 of . The xComputer

consists of a (CPU) and a that

holds 1024 sixteen-bit binary numbers. The CPU contains an

(ALU), like the one designed in Chapter 2, for performing basic

arithmetic and logical computations. It also contains eight that

hold binary numbers being used directly in the CPU's computations, a

that is responsible for supervising the computations that the

CPU performs, and a that drives the whole operation of the computer

by turning a single output wire on and o�.

The program that you will use in this lab lets you load pro-

grams and data into the memory of the simulated xComputer. You can then

watch while those programs are executed, and you can observe how numbers

stored in the computer change as a program runs.

This lab contains some information about xComputer and its machine

language. It demonstrates how instructions are fetched from memory and

executed by the CPU. And it will explain the features of the simulation
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The main window of the xComputer program, which allows you to

control the computer and see the contents of its registers and memory

program, . Lab 5 will be a continuation of this lab that covers

the programming process in more detail.

It would be useful for you to read through Chapter 3 of the text be-

fore doing this lab. Chapter 3 is rather technical, and you might �nd that

you need to work through both this lab and that chapter before you really

understand either of them.

Begin the lab by starting up the program

. You will see the window shown in Figure 4.1.

The \Memory" section of this window shows the 1024 locations in xCom-

puter's memory. These locations are numbered from 0 to 1023. Each line in

the memory shows a location number and the value stored in that location.

When the program �rst starts up, the memory contains only zeros. The

scroll bar can be used to view any part of memory.

The \Console" section of the window is used to interact with and control

the xComputer. The Stop Clock checkbox turns the simulated clock on and

o�. Since the computer is running only when this clock is on, the Stop Clock

checkbox really turns the computer itself o� and on. The other items in

the Console section are used to load values into memory and into the PC

register. This will be discussed below (along with a much easier way to load

values into memory).

The \Registers" section of the window shows xComputer's eight registers.

Remember that a register is simply a memory unit in the CPU that holds



next

�

�

�

�

�

�

�

fetch-and-execute cycle

Introduction To xComputer Lab 4, Page 3

1. Make sure that the \addr" input box in the Console contains a zero.

Type the instruction \lod-c 17" into the \data" input box in the Console

and press return. (Don't type the quotes!) The number 25617 will appear in

data being used directly in the CPU's computations. Each register plays a

particular role in the execution of programs by the CPU. These roles are

described in detail in the text and will be illustrated during the course of

this lab, but here for your reference is a brief summary:

The X and Y registers hold two sixteen-bit binary numbers that are used

as input by the ALU. For example, when two numbers are to be added,

they are �rst put into the X and Y registers.

The AC register is the accumulator. It is the CPU's \working memory"

for its calculations. When the ALU is used to compute a result, that

result is stored in the AC. For example, if the two numbers in the X and

Y registers are added, then the answer will appear in the AC. Also, data

can be moved from main memory into the AC and from the AC into main

memory.

The FLAG register stores the \carry-out" bit produced when the ALU

adds two binary numbers. Also, when the ALU performs a shift-left

or shift-right operation, the extra bit that is shifted o� the end of the

number is stored in the FLAG register.

The ADDR register speci�es a location in main memory. The CPU often

reads values from memory or writes values to memory. Only one location

in memory is accessible at any given time. The ADDR register speci�es

that location. So, for example, if the CPU needs to read the value in

location 375, it must �rst store 375 into the ADDR register.

The PC register is the program counter. The CPU executes a program by

fetching instructions one-by-one from memory and executing them. (This

is called the .) The PC speci�es the location

in memory that holds the instruction to be executed.

The IR is the instruction register. When the CPU fetches a program

instruction from main memory, this is where it puts it. The IR holds

that instruction while it is being executed.

The COUNT register counts o� the steps in a fetch-and-execute cycle. It

takes the CPU several steps to fetch and execute an instruction. When

COUNT is 1, it does step 1; when COUNT is 2, it does step 2; and so

forth. The last step is always to reset COUNT to 0, to get ready to start

the next fetch-and-execute cycle. This is easier to understand after you

see it in action.

You will learn how the xComputer works by giving it a short program

and watching it execute that program. To enter the program, follow these

steps:
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2.

3.

4.

Set PC=0 Assembler

location zero in main memory.

Type \add-c 105" into the \data" input box and press return. The

number 16489 appears in location 1 in memory.

Type \sto 10" into the data input box and press return. The number

10250 appears in location 2 in memory.

Type \hlt" into the data input box and press return. The number

11264 appears in location 3 in memory.

Try this now. Make sure that the PC contains a zero. If it does not, set

the PC to zero using the command in the menu.

(An alternative method for entering a number into the PC is to type the

Here's what happened: Lod-c 17 is an

instruction. When it is eventually executed by xComputer,

it causes the computer to load the number 17 into the AC register. When

you pressed return, this instruction was translated into machine language

and stored in the location indicated by the \addr" box (that is, location

zero). It so happens that in machine language, the instruction \lod-c 17"

is represented by the number 25617, so that is what appeared in location

zero. (Even this is not really true since the instruction is actually stored in

memory as a binary, not a decimal, number.)

The instruction add-c 105

translates into 16489 in machine language. That number is stored in lo-

cation 1 because there is a 1 in the \addr" box. (For your convenience,

the \addr" is incremented automatically when you press return.) Keep in

mind that the instruction add-c 105 is being executed when you press

return|just entered into memory. Later, when you run the program, it will

be executed. At that time, it will tell xComputer to add the number 105 to

whatever number is already in the AC.

When it is executed later, this

instruction will make the CPU store whatever number is in the AC into

location number 10 in main memory.

When this instruction is executed,

the computer will stop running.

You have now entered a very simple program into memory. When the

computer executes this program, it will start by loading 17 into the AC. Next,

it adds 105 to the AC. Then, it stores the answer into memory location 10.

Finally, it executes the \hlt" instruction and stops. After the program runs,

you can look in memory location 10 to �nd the result of the computation.

How do you make the computer run the program? If you click on the

Stop-Clock checkbox in the Console, the computer will start running. That

is, it starts fetching instructions from memory and executing them (which

is all that it ever does). You have to make sure that it begins with the �rst

instruction of the program, which is in location zero in memory. What tells

the computer where to get the next instruction? The number in the PC

register. So, running a program requires two steps: First, make sure that

the PC contains the starting location of the program in memory; and second,

click on the Stop-Clock checkbox to start the computer running.
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Run Assembler

New File

number into the \data" input box and then click on the \Load PC" button.)

Then, click on the Stop-Clock checkbox to start execution of the program

(or, equivalently, use the command from the menu).

Use the command in the menu to open a new programwindow.

Enter the following program into that window:

If you have done everything correctly, the program will run. You will

see things happening, but will probably not really understand them at this

point. But you will notice that the instructions in the program appear one by

one in the IR register as they are executed. Eventually, the HLT instruction

will be executed and the computer will stop running. The correct answer

to the computation, 122, will be in memory location 10. This gives you the

general idea of how programs are executed by xComputer. Your goal in the

rest of the lab is to understand the details.

It should be clear that entering a long pro-

gram into xComputer by typing it into the data-input box would be very

tedious and error-prone. If you accidentally leave out one instruction, for

example, you would have to retype all or most of the program. Fortunately,

you can type your program in a separate window and then load that win-

dow into memory. This has three advantages: You can edit the program in

the window, for example by inserting a new instruction. You can save the

contents of a window in a �le, so that you'll never have to retype it again.

And you can use in your program. Labels are a powerful program-

ming technique; they are described in the Postscript to Chapter 3 in the

text. They are not covered in this lab, but they will be an important part of

Lab 5.

lod-c 17

sto 12

lod 12

inc

sto 12

jmp 2

This program . It starts by putting the number 17 into memory lo-

cation 12, and then it adds one to the number in that location over and

over, forever. (You'll see this in action in a moment.) There are several new

instructions here. Lod 12 tells xComputer to copy the number from mem-

ory location 12 into the accumulator. (Note that this di�ers from Lod-c 12,

which would put the number 12 itself into the AC, rather than the number

stored in memory location 12.) The inc instruction adds one to the value in

the accumulator. And jmp 2 is a jump instruction that sends the computer

back to location 2, that is, back to the lod 12 instruction.
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Load Assembler
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Options

Options

After typing this program in a window, load it into xComputer's memory

using the command from the top of the menu. (This com-

mand is available only if the front window on the screen is a program window

and if a program is not already running.) When you load the program, you

will see the equivalent machine language program appear in locations zero

through �ve in memory. After loading the program, run it to see how it

operates. Don't forget to set PC to zero before starting the computer.

Using a sub-menu, or \hierarchical menu," to change the style of dis-

play for the memory of xComputer. The memory display menu appears when you

move the mouse over \Memory Display" in the Options menu. It lists six di�er-

ent ways of displaying the contents of memory, and also allows you to see xCom-

puter's control wires instead of the memory. Here, the memory display style is being

changed to assembly language. Run Speed and Register Display are also sub-menus.

By the way, note that the command-key equivalents listed at the right edge of the

menu are often more convenient to use than the menu itself.

You can watch as the PC counts o� the instructions in the program. You

can see the assembly language instructions themselves as they are loaded into

the IR. And you can observe that the value in memory location 12 changes

from 17 to 18 to 19 to 20 and so on. This program will run forever, if you

let it. You can stop the program by clicking on the Stop-Clock box, or,

equivalently, using the command from the menu.

You will be working with this little program throughout the remainder

of the lab. Your objective is to understand how xComputer operates and to

appreciate the fetch-and-execute cycle.

The menu in gives you some control

over the speed at which the computer runs and how numbers in the computer

are displayed. You should �nd the various speeds and display styles helpful in

understanding the way computers operate. The speed and display commands

in the menu are contained in sub-menus. Figure 4.2 shows how to

use such menus.
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Memory Display Options

Try out the various Memory Display styles. Make sure that the little

counting program from earlier in the lab is still in the computer's memory.

Computers work only with binary numbers, but those numbers are used

to encode machine language instructions and data of various kinds. The

program allows you to view the contents of the main memory

and the registers in di�erent ways. When you �rst start the program, it is

set up to display the contents of memory as ordinary decimal numbers in

the range 32768 to 32767. The contents of the registers are displayed as

decimal numbers, except for the IR, which displays an assembly language

instruction. Keep in mind that what is really there are binary numbers, and

what you see is just one interpretation or view of those numbers. You can

use the sub-menu of the menu to change the

display style of the numbers in main memory.

The Binary display shows a 16-bit binary number in each memory lo-

cation; this display style is closest to the actual physical contents of the

memory.

The Signed Integer and Unsigned Integer displays show ordinary decimal

numbers. The di�erence is that signed 16-bit integers are in the range 32768

to 32767, while unsigned 16-bit integers are in the range 0 to 65535. (In either

case, there are 2 di�erent possible values|it's just a question of how they

are interpreted. See Subsection 2.2.3 in the text.)

The Assembly Language display shows the contents of each memory loca-

tion as an assembly language instruction. In this display style, you should see

the original counting program in memory locations 0 through 5. Most of the

other locations contain \Add 0," which just happens to be the assembly lan-

guage instruction encoded by the 16-bit binary number 0000000000000000.

(Since not every 16-bit binary number corresponds to a legitimate assembly-

language instruction, you might see some funny things in this display style.)

The ASCII display interprets each sixteen-bit number in memory as made

up of two eight-bit ASCII character codes, and shows the two characters.

The Graphics display is very di�erent from the others. It shows the

memory at once. Each bit in memory|all 16 times 1024 of them|is

represented by one pixel on the screen. That pixel is white if the bit is zero

and is black if the bit is one. If you choose the Graphics display now, the

memory will be almost entirely white, except for a few black dots at the top

that represent the program you entered into memory.

I should note that when you enter information into Memory using the

\data" input box in the Console, you can type the information in several

of the above display styles, as well as in assembly language. You can, for

example, enter ordinary numbers in the range 32768 to 65535. You can

enter a binary number, but you must precede it by the letter B. For exam-

ple: B1011010111. Finally, you can enter a single ASCII character, provided

that you precede it by a quote mark. For example: '@ or 'A. You will need



The Most Complex Machine

control wires

Control circuit

Introduction To xComputer Lab 4, Page 8

Memory Display Show

Control Wires Instead

Options

Speed Manual, by step.

Memory Display Show Control Wires Instead

Experiment with di�erent speeds as the counting program runs. Try to

understand how the computer works. When you feel comfortable with the

program, you are ready for the next exercise.

Stop the computer. Set the to number 6, Set

the to .

to do this for Exercise 1 at the end of the lab.

The menu contains one additional option:

. If you choose this option, the Memory display

will disappear and will be replaced by a list of . These con-

trol wires are the key to understanding how the xComputer really works.

The basic idea is that turning wires on and o� makes things happen in the

computer. An instruction is fetched from memory and executed simply by

turning on the right wires in the right sequence. All the wires are connected

to the outputs from a which is responsible for turning them

on and o�. All this is explained carefully in .

In the next section of the lab, you will get to see it in action, at least in

simulation.

The menu contains another sub-menu that controls how fast

the simulated xComputer runs. Speed number 1 is fastest. At this speed,

the computer's registers disappear from the screen so that no time is wasted

writing their contents. It can be particularly useful to use this speed with the

Graphics memory display style|if you look closely, you can see individual

bits changing in memory as the program runs. This is, in a way, the most

realistic view of the computer's memory that you will ever see.

Speeds 2, 3, 4 are successively slower. At these speeds, you can watch

the contents of the registers change. At the Slow speed, number 4, you will

have time to notice each little step in the fetch-and-execute cycle.

Speeds number 5 and 6 are a bit di�erent. At these speed settings,

the computer does not proceed automatically from step to step. Instead, a

button labeled \Next" appears when you run the computer, and you have

to click on this button every time you want the computer to execute a step.

The di�erence between speed 5 and speed 6 is what is meant by a \step." At

speed 5, a step is a complete fetch-and-execute cycle, that is, the execution

of one machine language instruction. Each fetch-and-execute cycle is really

made up of a number of simpler, lower-level steps. It is these lower level

steps that you see at speed 6.

The control wires are the key to understanding how the computer works.

They are turned on and o� by the Control Circuit, and they control the

operation of other components of the CPU. Each control wire has a function.

Turning that wire on causes something to happen, such as moving a number

from main memory into the AC register or adding the numbers in the X and
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Show Control Wires Instead

Load-

addr-from-PC

Load-IR-from-Memory

Increment-PC

Load-AC-from-IR

Set-COUNT-to-Zero

Reset the PC to zero and then restart the computer to run the program

again starting from the beginning. The \Next" button appears. Watch as

the �rst instruction of the program, Lod-c 17, is fetched and executed:

Y registers and putting the answer into the AC. Executing a program is just

a matter of turning the right wires on and o� in the right sequence.

How does the control circuit know which wires to turn on at each step?

It only needs two pieces of information: (1) Which step of the fetch-and-

execute cycle is currently being performed. This information is available in

the COUNT register. And, during the \execute" part of the cycle, (2) what

machine language instruction is being executed. This information is in the

IR register.

At speed 6 and memory display , you can

step through the fetch-and-execute cycle and see how each step is performed.

First click on the Next button: COUNT becomes 1, indicating that the

�rst step in the fetch and execute cycle is being performed. The

control wire is turned on, so the value in the PC register

is copied into the ADDR register. (The PC register tells which memory

location holds the next instruction; that location number must be copied

into the ADDR register so that the computer can read that instruction

from memory.)

Second click: COUNT becomes 2; control wire is

turned on; the next program instruction is copied from memory into the

IR. (The ADDR register determines which instruction is read.) In this

case, the instruction is Lod-c 17

Third click: COUNT becomes 3; control wire is turned

on; the value in the PC register is incremented by 1, changing in this

case from 0 to 1. This prepares the PC for the fetch-and-execute

cycle: the instruction will be read from location 1. This completes

the \fetch" portion of the fetch-and-execute cycle. The remaining steps

depend on the particular instruction that is begin executed.

Fourth click: COUNT becomes 4; control wire is turned

on; 17, the data value in the instruction in the IR register, is copied into

the accumulator. This is the only step necessary to execute the Lod-c 17

instruction. Other instructions are more complicated.

Fifth click: COUNT becomes 5, but only briey;

control wire is turned on and immediately the value of COUNT is reset

to 0. One fetch-and-execute cycle is over. On the next click, COUNT

becomes 1 again, and the next cycle begins.

As you click on the Next button in this exercise, you are actually simulating

the role of the xComputer's clock. Each click has the same e�ect as one tick

of the clock, and you are driving the computation at your leisure in the same
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Load Load

Continue clicking through a few more execution cycles.

Run this program and see what it does. Try running it at highest speed

with the memory display set to \Graphics." Exercise 4 at the end of the lab

asks you to �gure out what this program does and why.

way as the ticking of the clock usually drives the computer with its regular

ticking.

Exercise 2 at

the end of the lab asks you to follow the execution of another instruction in

detail, as we have done here for lod-c 17.

As a �nal exercise, enter the following program

into xComputer's memory. The easiest way to do this is to type it into

a window, and then use the command. (Remember that the

command won't work if a program is running.) This program is similar to

the previous counting program, except that the number for the second sto

command has been changed, and six new instructions have been inserted

before the jmp command:

lod-c 0

sto 12

lod 12

inc

sto 13

lod 2

inc

sto 2

lod 4

inc

sto 4

jmp 2

The instructions \lod 2; inc; sto 2" add 1 to the number stored in memory

location 2. Similarly, \lod 4; inc; sto 4" adds 1 to the number in location 4.

But if you look at what's in locations 2 and 4, you'll see the instructions

\lod 12" and \sto 13." This seems odd. What happens when you \add 1"

to an instruction?

Remember that machine language instructions are \really" just numbers.

There is no problem with adding 1. However, the meaning of the instruction

is changed. If you add 1 to the number that encodes \lod 12," the meaning of

the answer is \lod 13." Similarly, if you add 1 to \sto 13," you get \sto 14."

If you want to understand exactly why this is true, check the format of

machine language instructions given at the beginning of Section 3.2 of

.
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Exercise 1:

a)

b)

c)

d)

e)

Exercise 2:

Show Control Wires Instead

Exercise 3:

Exercise 4:

It was noted above that you can use to translate

from one type of data to another by entering it in one form in the \data"

input box and viewing it in memory in another form. Use this method to do

the following conversions, and explain briey how you do each part:

Find the ASCII code for the character $.

Find the character whose ASCII code is 103.

Find the binary representation of 233.

Find the unsigned integer that has the same binary representation as

the signed integer 233.

Find the unsigned integer that represents the assembly language in-

struction \sto 1023." Add 1 to that number, and then �nd the assembly

language instruction represented by the resulting number. Why do you get a

completely di�erent instruction? (Note: Do the addition yourself; you don't

have to program the computer to do it!)

The instruction lod 17 tells the computer to copy a number

from memory location 17 into the accumulator. Use to watch as

a lod 17 instruction is executed step-by-step, just as you did above for the

instruction lod-c 17. To do this, enter a lod 17 instruction into memory

location zero. Set the run speed to speed number 6, set the display style

to , and make sure that the PC contains a

zero. Then step through the fetch-and-execute cycle as the lod instruction

is executed. Write down what happens during each step. Carefully explain

the purpose of each step in the execute phase of the cycle. What di�erences

do you �nd between the execution of a lod-c instruction and the execution

of a lod instruction?

Modify the �rst counting program used in this lab so that

it will count just from one to sixteen, stopping when it reaches sixteen. To

do this, you need to test whether the number is sixteen and, if it is, jump

to a HLT instruction at the end of the program. You can test whether a

number is equal to sixteen by subtracting it from 16 and testing whether the

answer is zero. And you can do that with a JMZ instruction. This is like a

JMP instruction, except that the jump only occurs if the number in the AC

is zero.

Describe what is done by the program

you encountered at the end of the lab, and discuss in detail how it works.
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by David J. Eck

The machine language for xComputer consists of

thirty-one di�erent instructions, each of which performs a very simple task.

Nevertheless, very complex programs can be built up from these instruc-

tions. This lab is an introduction to programming in xComputer's machine

language. In fact, though, you will actually be using assembly language

rather than the nearly unreadable (to humans) machine language itself.

You should be familiar with the assembly language of xComputer, as

covered in Chapter 3 of , including the idea of

that is introduced in the postscript to the chapter. You should also be

familiar with the workings of the xComputer simulation program that was

introduced in Lab 4.

In Lab 4, you saw how individual instructions

are executed in xComputer in a step-by-step fashion. That lab used only

a few di�erent instructions in very small programs, but it was noted that

larger programs can be entered in windows, saved in �les, and loaded into

xComputer's memory when needed. When such a program is loaded into
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3N+1 Sequence

3N+1 Sequence

xComputer

one

3N+1 Sequence

Load the program from the window , using the �rst com-

mand in the menu. (You can only do this if the

window is the front window on the screen, and the xComputer is not already

running.) Run the program. To see the numbers as they are generated,

watch memory location number 115, which contains the successive values

of starting with 3. You will probably want to bump the speed up to speed

number 2, .

You should read them.

memory to be executed, it must be translated into machine language. Recall

that a program that translates assembly language into machine language

is called an . The simulation program includes an

assembler that permits the use of labels and other neat things in assembly

language programs.

To see some of the possibilities, start up and open the �le

. It should be in a folder called . This �le

contains an assembly-language program that computes a \3N+1 sequence."

(This is a problem that you will see several times in

.) Given a positive integer , the program applies the rule: \If

is even, then replace by 2; if it is odd, then replace it by 3 + 1."

It applies this rule over and over until the number becomes equal to 1.

For example, if the starting value of is 7, then the program generates the

sequence of values: 7, 22, 11, 34, 17, 52, 26, and so on.

The assembler for understands all of the data-entry formats

explored in Lab 4: assembly language instructions, base-ten integers in the

range -32,768 to 65,535, binary numbers of from 1 to 16 bits (provided the

number is preceded by a \B"), and individual characters (which must be

preceded by single quotes and which are translated into into their ASCII

code numbers). The program can contain at most of these things on

each line. When a line in a �le contains one of these items, that item is

translated into a binary number and loaded into the next available location.

However, an assembly language program can also contain other things.

A program can contain meant purely for human readers.

A comment starts with a semicolon (;) and ends at the end of the line.

These comments are completely ignored by the assembler. There are lots of

comments in the �le.

A program can use to refer to memory locations. A label is a name

that is de�ned in a program to stand for some speci�c number. That number

is the address of some location in memory. For the most part, a label can be

used any place a number can be used. For example, if \Lbl" is a label in a

program, that program could use the instruction \JMP Lbl" to jump to the

location speci�ed by Lbl. Since Lbl is really just a number, that program

could also use instructions like \LOD Lbl" or even \Add-c Lbl." Besides

these to the label Lbl, the program must contain exactly one

of this label. A label is de�ned by using it to label a memory
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The starting value 7 in location N can be changed to any other number.

Try making such a change and then re-loading and re-running the program.

The program will generate a 3N+1 sequence starting with whatever number

you specify.

location, like this:

Here, Lbl will be equal to the address of the memory location that ends up

holding the instruction \Lod 10" when the program is loaded into memory.

The whole point of labels is that as you write the program, you don't need

to know what the location number will be.

The program contains �ve labels: NextN, Even, Odd,

Done and N. The label Even is de�ned but is never referred to; it is really

there just for human readers.

Look at the label N, which occurs near the end of the program. Like all

labels, N is the name of a memory location, but in this case the location is

loaded with a number, 7, rather than with an assembly language instruction.

The 7 is meant to be used as data by the program. The name \N" can be used

in the program to refer to that data. Of course, N is still really just a number

indicating a location in memory. When the program is assembled, it turns

out that N is a label for memory location 115. Therefore, the instruction

\Lod N" in the program is equivalent to the instruction \Lod 115," which

loads the contents of memory location 115 into the accumulator.

A program can contain a few other neat things, such as the \@100" at

the start of . You can read about this and other features in

the comments in the sample programs you will look at. Here are few �nal

remarks on the assembler:

The assembler makes no distinction between uppercase and lowercase

letters in instruction names and labels. Thus, for example, \LOD," \lod"

and \Lod" are all equivalent.

Binary numbers and characters can be used in instructions in place of

decimal numbers, as in \Add-c B1101" and \Lod-c '$".

The command in the menu will produce a new

window containing an assembly language program representing the con-

tents of xComputer's memory at the time the command is

used. This program might contain some funny-looking instructions, such

as \Hlt 16," that you wouldn't write yourself. This is the consequence of

trying to interpret data in memory as instructions, even though not all

binary numbers stand for legal instructions.

Programs are structured by , in

which a group of instructions is repeated over and over, and ,
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Exercise 1.

Exercise 2.

Make sure that you understand these programs and the general ideas

of loops and decisions. You will need to understand them to complete the

exercises at the end of the lab.

Modify the 3N+1 program so that it counts the number

of steps it takes for N to become 1. To do this, add another labeled location

at the end of the program. Call it \Count." Change the program so that it

starts by storing a zero in location Count. Each time through the loop, the

program should add 1 to Count. When the program ends, the value in Count

is the number of times the program has gone through the loop. This is also

the number of steps that were computed in the sequence. Add comments to

the program to indicate the modi�cations you have made. Make a printout

of your program.

Look at the �le . This �le contains part of a pro-

gram for adding up a list of numbers. The assignment, which is to complete

where a choice is made between alternative courses of action. The 3N+1

program shows both of these structuring methods. It has a loop which

computes one step in the sequence. This loop is repeated until the sequence

reaches 1. Inside this loop is a decision between the actions \replace N by

N/2" and \replace N by 3N+1."

There is another sample programs that you can look at,

, which also contains a loop but is somewhat simpler than

. It will be important for you to understand how these programs

work. You should read them carefully. A good way to get a feel for how

they work is to run them at speed number 5, . At

this speed setting, you drive the execution of the program by clicking on a

button labeled \Next." Each time you click, the xComputer goes through

one full fetch-and-execute cycle, executing one machine language instruction.

Click through the program and observe what happens. (As you watch, note

that the instruction you see in the IR register is the one that has just been

executed, the one that is about to be executed.)

There is another sample program that is provided

mostly for your amusement, but also because watching it run might just

give you a better appreciation of just what a computer is really doing as

it computes. Open the �le , read the comments at the

beginning of the �le, and then load the program. Set the display style to

and the run speed to , and run the program. You will

see the bits in xComputer's memory dance as a non-trivial computation is

performed.
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Exercise 3.

Exercise 4.

the program, is described in full in that �le. Make a printout of your pro-

gram.

The program for Exercise 2 uses indirect addressing. (This

part is done for you!) Explain how indirect addressing works in that program

and why it is used.

Just as it is possible to multiply by adding over and over, it

is possible to divide by subtracting over and over. Suppose you want to know

how many times N1 goes into N2. Start with N2 and subtract N1 repeatedly

until the answer is less than N1. The number of subtractions you performed

is the number of times that N1 goes into N2. For example, you can compute

that 4 goes into 14 three times by computing . (The number

2 that you end up with here is the when 14 is divided by 4.)

Write a program to compute how many times a number N1 goes into

another number N2. Your program will be somewhat similar to the sample

program . You still need a loop, and you still need to

count how many times that loop is executed. However, the set-up before the

loop, the action performed in the loop, and the test for ending the loop are

di�erent. Note that to test whether , you can test whether

with a JMN instruction.

Your program must have comments that describe what it does and how

it works. Make a printout of your program.
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A subroutine is a set of instructions for perform-

ing some task, chunked together and thought of as a unit. Like loops and

decisions, subroutines are useful in the construction of complex programs.

The machine language for xComputer does not provide direct support for

subroutines. But then again, it doesn't really provide direct support for

loops and decisions, which must be implemented by the programmer with

jump and conditional jump instructions. Similarly, it is possible to imple-

ment subroutines using jump instructions. They are not as easy, as neat, or

as safe as subroutines in a high-level language, but they can still be a valu-

able tool. And you get to see how subroutines can be made to work even on a

very minimal computer. (You should understand, though, that the machine

languages of real computers do provide more support for subroutines than

what is covered here.)

Before doing this lab, you should be very comfortable with the material

from Lab 4 and Lab 5. This lab is based on the assembly language of the

xComputer, as described in Chapter 3 of , but

it goes beyond the material presented there.
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The idea of subroutines is

simple enough. A subroutine is just a sequence of instructions that performs

some speci�c task. Whenever a program needs to perform that task, it can

the subroutine to do so. The subroutine only has to be written once,

and once it is written, you can forget about the details of how it works. You

only need to know what it does and how to call it.

In xComputer's assembly language, \calling" the subroutine means jump-

ing to the �rst instruction in the subroutine, using a JMP instruction. The

execution of the subroutine will end with a jump back to the same point in

the program from which it was called. This is known as from

the subroutine. (Other computers provide special commands for calling and

returning from subroutines.)

There is more to it than a few jump instructions, though, because there

usually has to be some kind of communication between the subroutine and

the rest of the program. In particular, the subroutine needs some way of

knowing the location in the program to which it must return. The address

of that location is called the for the subroutine. Since a

subroutine can be called from several di�erent places in a program, the return

address can be di�erent each time the subroutine is called. So, whenever the

subroutine is called, the return address must be provided to the subroutine

as data. In a high-level language this is done automatically, but for now

you have to know how to do it yourself. Before jumping to the start of a

subroutine, you must explicitly store the return address in a memory location

reserved for that purpose. The �nal instruction in the subroutine will then

be a jump to the address speci�ed in that location.

The return address is an example of data sent from the main program

to the subroutine. Many subroutines require additional data from the main

program in order to perform their tasks. For example, a subroutine whose

task is to multiply two numbers needs to know what the two numbers are.

Sometimes, a subroutine has to communicate data back to the main program.

For example, after the multiplication subroutine ends, the program will want

to know the answer that it computed. Data values exchanged between the

subroutine and the main program are called for the subroutine.

Parameters can be implemented in the same way as the return address: The

parameter is simply stored in a location known to both the main program

and to the subroutine. (In the xComputer, a parameter value could also be

passed in the accumulator register, which has some advantages but can only

accommodate one parameter.)

So, when a program calls a subroutine, it goes something like this: First,

the program loads any parameter values needed by the subroutine into the

appropriate memory locations. Then, it loads the return address into the

memory location reserved for that purpose. Next, it executes a jump to the

�rst instruction in the subroutine. (The return address is just the address
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of the location that follows this jump instruction.) When the subroutine

�nishes, it jumps back to the return address. At that point, the program

can access any parameter values computed by the subroutine.

You might ask, is it really worth all this trouble? If the subroutine is

very short, the answer is probably no. But if the subroutine performs some

complex task, then the work that goes into calling it is much less than the

work it would take to re-write it. You should also remember that in high-level

languages, much of the work of calling a subroutine is done automatically,

behind the scenes.

It's time to take a look at an example to see how all this works in practice.

Open the �le , which you should �nd in a folder named

. This �le contains a subroutine called and a program that

uses it. The subroutine is at the end, starting at about the midpoint of

the �le. (\ " is really just a label for the �rst instruction in the

subroutine; calling the subroutine will mean jumping to this label.) The

subroutine searches through a list of numbers to �nd the largest number in

the list.

The subroutine is preceded by a \data area" consisting of memory lo-

cations to hold the return address and the three parameters used by the

subroutine. Each of these memory locations has a label that can be used to

refer to it conveniently. (Recall that the \data" command, used for example

in \ " just tells the computer to reserve a memory location

that the program will use to hold data.)

In addition to the parameters, the data area includes some memory lo-

cations that are for purely internal use by the subroutine. These memory

locations are not parameters|they are not used for communication with the

main program. Ideally, the main program wouldn't need to know anything

about them at all.

Taken all together, the return address, the parameters, and the local

data form what is called the for the subroutine. The

activation record could in fact be anywhere in memory. It was only to make

it easier to �nd that I included it right before the subroutine.

Finally, look at the very end of the subroutine, where you will �nd the

instruction \ ". This is the instruction that jumps back to the

return address. Recall that the JMP-I instruction uses indirect addressing.

It doesn't jump to location but to the location whose address is stored

in location . This is, of course, exactly what we want because location

contains the return address.

The main program in �le is very simple. It just calls the sub-

routine and then saves the value that was computed by the subroutine in

a memory location named . It is worth studying this main program

carefully and in detail. It starts by loading parameter values in locations
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and , which are within the subroutine's activation record. It then

speci�es the return address by loading the number into . The

next instruction begins execution of the subroutine by jumping to location

. The three instructions starting at location are executed af-

ter the subroutine has completed. This part of the program just saves the

parameter value that the subroutine has computed and stored in location

.

You should run the program to see it in action. Also try changing the list

of numbers and the size of the list to make sure that the program still works

with the modi�ed data. Recall that to run a program, you should �st load it

into memory with the command in the menu. Then, make

sure that the PC register contains a zero (to indicate the starting instruction

of the program), and click on the box to begin execution.

Write a subroutine to add two numbers. (This is a pretty

silly thing to do|the point is to demonstrate that you understand the basic

concepts involved.) Your subroutine should have three parameters: the two

numbers to be added and their sum. Write a main program that uses your

subroutine to add 17 to 105. Turn in a listing of your program, including

the subroutine. The subroutine should be carefully commented.

The �le contains a subroutine, \swap max" that

�nds the largest number in a list of numbers and then exchanges that max-

imum value with the number at the end of the list. This subroutine is very

similar to the \�nd max" subroutine that you looked at earlier in the lab,

except that after �nding the maximum it moves it to the end of the list.

It is possible to a list of numbers into increasing order by repeatedly

calling swap max. When sorting a list of 10 numbers, for example, �rst call

swap max with a size parameter equal to 10. This will move the largest item

into position 10 in the list. If swap max is then called with size equal to 9,

it will ignore the number in position 10 and will �nd the next largest item

and move it into position 9. Calling swap max with size 8 will then move

the third-largest item into position 8, and so forth.

Read the comments in the �le . Write a main program that will

sort the list of numbers by repeatedly calling the swap max subroutine, as

described in the comments. Use a loop. It should be easy to modify your

program to sort a longer list. (Note: As you are developing your program,

you might �nd it convenient to include an extra HLT command or two. The

computer stops when it gets to a HLT, but if it is restarted it will just

continue with the next instruction. The extra HLTs will let you run the

program at full speed but make it stop at those points where you would

like to inspect what is happening more closely. A HLT instruction used in
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Exercise 3:

Exercise 4:

this way is called a \breakpoint." Breakpoints are very useful for debugging

a program. You can remove the extra HLTs after the program is working

perfectly.)

The �le contains a subroutine that com-

putes the remainder when one number is divided by another. (For example,

the remainder when 23 is divided by 5 is 3.) In this exercise, you will use

this subroutine to make a list of .

We say that the number is by the number if the

remainder when is divided by is zero. A number , greater than 1, is

prime if it is not evenly divisible by any number between 2 and 1. In

fact, it is enough to check that is not evenly divisible by any number

between 2 and 1.

The comments in the �le explain how to write a program

to make a list of prime numbers. Read the comments and write the program.

A subroutine is a \black box" that can be used without

understanding the internal workings of the subroutine. The black box has

an that provides for communication between the black box and

the rest of the program. The \internal workings" of the black box make

up its Look back at the subroutine \list max." What

exactly is the interface of this subroutine? What is its implementation? The

xComputer assembly language does not support the black box concept very

e�ectively. Why not? (Think about all the labels used internally in the

subroutine. Ideally, when you write the main program you wouldn't need to

know about these labels. But in fact, you at least need to know that they

exist.) Write an essay answering these questions.
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Turing machines are extremely simple calculating

devices. A Turning machine remembers only one number, called its .

It moves back and forth along an in�nite tape, scanning and writing symbols

and changing its state. Its action at a given step in the calculation is based

on only two factors: its current state number and the symbol on the tape

that it is currently scanning. It continues in this way until it enters a special

state called the . In spite of their simplicity, Turing machines can

perform any calculation that can be performed by any computer. In fact,

certain individual Turing machines, called ,

can actually execute arbitrary programs, just as a computer can. You won't

see any universal Turing machines in this lab, but you will experiment with

Turing machines that can perform non-trivial calculations.

You should have some familiarity with the material on Turing machines

from Chapter 4 of before beginning this lab.

Especially important is the idea that a Turing machine is described by a

table that speci�es what action the machine will take for each combination

of state and scanned symbol. The action takes the form of writing a new (or
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xTuringMachine

meaning

Change o to x, i to y Files for

Lab 7. xTuringMachine

A window from the program xTuringMachine showing a Turing ma-

chine and its tape, along with the table of rules that determine the behavior of the

machine.

Open

the �le . You should �nd it in a folder named

When you double-click on the �le, the program will

start up and a window will open like the one shown in Figure 7.1.

the same) symbol to the current square, moving either left or right on the

tape, and entering a new (or the same) state.

In this lab, you will work with a program

called . This program simulates Turing machines with up to

twenty states. The symbols that can be used on the tape are the letters i, o,

x, y and z; the dollar sign $; and the blank space (sometimes written as #).

The letters i and o are meant to look like the digits one and zero, and will

be used to represent \binary numbers" on the tape. But remember that the

of a symbol has no e�ect on any calculation performed by a Turing

machine; all the machine does is follow its rules.

To start the lab, you will look at a simple Turing Machine in action.

At the top of the window is the Turing machine itself, which looks a little

like a small computer display screen. This \screen" displays the current state
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Step

Step Reset Reset
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xTuringMachine

Modifying the tape.

Step through the execution of the Turing machine \ "

by clicking on the button as often as necessary. The name of the ma-

chine tells what it does. How does it do this? What makes the computation

halt? What happens if there is no $ on the tape? What happens when the

machine reaches the edge of the window?

Try these before you go on to the

next section.

of the machine. This state can be either an \h", indicating the halt state, or

a number between 0 and 19. The machine starts in state 0.

Just below the machine is an in�nite tape made up of squares that can

each contain one symbol. It extends, conceptually, an in�nite distance o�

the right and left edges of the window. The Turing machine moves back and

forth along this tape as it computes, reading and changing the symbols in

the squares.

At the bottom of the window is the table of rules that de�nes the behavior

of the machine. Each row of the table speci�es one rule. In Figure 7.1, for

example, the �rst row of the table says \If the machine is in state 0 and if the

symbol in the current square is # (that is, a blank), then the machine will

write a # in the square, move one square to the right, and change to state 0."

All the rules for a Turing machine are of this general form. Note that in this

case, the symbol it writes in the square is the same as the symbol that was

already there; this is just a fancy way of saying that it doesn't change the

contents of the square. Similarly when the machine \changes to state 0" in

this case, it doesn't really change its state; it just stays in the same state

that it was already in.

Below the tape and above the rule table in the window are some controls

that are used to add new rules to the table and to control the execution of

the Turing machine. If you click on the button, the machine will do

a single step in its computation; it applies the appropriate rule in the table,

depending on its current state and on the symbol in the square where it is

sitting. (Also, to help you follow what is going on, a box will be drawn in the

table around the rule which will apply in the step of the computation.)

If the machine enters its halt state, then its computation is �nished. In

that case, the button becomes a button; clicking on the

button will restore the state of the machine to 0 so that it can begin a new

computation.

There are a few other aspects of the program that you

can try out on this rather trivial machine.

You can change the contents of any square on the

tape manually. If you move the mouse cursor over one of the squares, the

cursor will change to a \pencil." If you then click and hold the mouse button,

you will get a that you can use to change the contents of the

square. For example, you can change some of the x's and y's on the tape
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Moving the Turing machine.
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Running the machine.

Find double-x

Find double-x

back to o's and i's. It is also possible to change the contents of the entire

tape at once, using the and commands from

the menu.

You can change the state of the Turing Machine

by hand (but only if the machine is not running). Just click on the state

displayed on the machine's screen. You will get a pop-up menu from which

you can select the new state. You will �nd this option handy when you are

creating a complex machine and you want to make it back up to a previous

state.

To move the Turing machine by hand,

hold down the Option key on the keyboard and point to the machine with

the mouse. When the cursor is on top of the machine, it will change from

an arrow to a \hand." You can drag the machine with this hand by pressing

the mouse button and holding it down as you drag. This allows you to move

the machine to a di�erent square on the tape. If you don't

hold down the Option key while you press the mouse button, you can still

use the hand cursor to move the machine, but the tape will be dragged along

with it.

As an alternative to pressing the button

over and over, you can simply click once on the button. The machine

will compute automatically until it reaches its halt state. The button

becomes a button while the machine is running; you can click on this

button to interrupt the computation. The speed at which the machine

runs depends on the setting of the menu. (At the highest speed, the

machine's \state display screen" disappears so that it can run as quickly as

possible.)

As another example, open the

�le . This �le de�nes a machine whose sole purpose is to move

to the right along its tape, until it �nds two x's in a row; it then halts on the

leftmost of those two x's. The machine you looked at in the previous section

had only a single numbered state, state 0. The machine has

two states, number 0 and number 1. As this machine runs, you will see it

changing between these two states.

Although its states are completely meaningless to the machine, from a

human point of view, we can assign a kind of meaning to each state. In

state 0, the machine is \moving to the right searching for an x." In state 1,

it \has found one x and needs to check the next square to see whether there

is another x there." In state 1, after checking the next square, it halts if it

�nds an x there and returns to state 0 if not. (One might say that the state

counts the number of x's in a row that the machine has encountered.)
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New File

Make

Make
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xTuringMachine

state number symbol

A rule table for a Turing machine that nudges a string of x's, y's and

z's one square to the left. The machine must be started on the leftmost symbol in

the string, and it will only work if there are a couple of blank squares surrounding

the string.

Begin by using the command from the menu to open a new

window. The machine in the window will have a blank tape and a blank

rule table. Enter a string of x's, y's and z's, such as \xxyxzz", on the tape,

and move the Turing machine to the leftmost symbol in the string. You are

ready to build the rule table for the machine.

Current

State

Current Cell

Contents

New Cell

Contents

Direction

of Motion

New

State

0 x # L 1

1 # x R 4

4 # # R 0

0 y # L 2

2 # y R 4

0 z # L 3

3 # z R 4

0 # # L 5

5 # # L 6

6 x x L 6

6 y y L 6

6 z z L 6

6 # # R h

As your �rst exercise at the end of this lab, you will change this machine

so that it searches for three x's in a row instead of two. To make such

changes, you will need to know about editing the rule table. This is covered

in the next section of the lab.

Figure 7.2 shows a rule table for a Turing machine

that nudges a string of x's, y's and z's one square to the left on its tape. In

this section of the lab, you will create an identical machine from scratch.

(You will �nd a ready-made copy of this machine in a �le named ,

but since you need to learn how to build Turing machines, you should make

your own.)

The program does not allow you to simply type in a

rule. Instead, it has procedures for adding a new rule to the table and for

modifying rules that are already in the table.

Rules are added to the table using the button, which is located

just above the rule table in the window. Just to the right of this button, you

can see a and a . If you click on the button or
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press the return key, a new rule is added to the table that tells the machine

what action to take when it is in that state and sees that symbol in the

current square. When the rule is �rst entered, it speci�es a default action:

leave the same symbol in the current square, move to the right and stay in

the same state. Once the rule is in the table, you can change the action it

speci�es. (Note: If a rule exists in the table for the speci�ed action

and state, the button becomes a button; clicking on the

button will �nd the existing rule and draw a box around it.)

You can change the speci�ed action for any rule in the table by changing

the symbol listed in the column, the direction listed in the

column, or the state listed in the column. Such changes can be

made using the mouse in the same way that it is used to change symbols on

the tape: Point to the item you want to change; the cursor changes into a

pencil; then, when you click and hold the mouse button, you get a pop-up

menu from which you can select the value you want. (Note that you

change the entries in the �rst two columns of the table.)

As you might have guessed by now, you can also change the state number

and the symbol next to the button by using the mouse in the same

way. This allows you to specify which rule you want to create.

All this allows you build any desired rule table, but there are a few other

convenient features that you might want to explore: First, note that there is

usually a drawn around one of the rules in the table or around the state

and symbol next to the button. (On color monitors, the box is red.)

You can move the box around with the arrow and tab keys on the keyboard,

or by clicking with the mouse (when the cursor is an arrow, not a pencil).

We say that the boxed item is . You can use the keyboard to change

values in the selected item. For example, if a rule is selected and you type

an \x", then the symbol in the column will change to an x. If you

type \17", then the state in the column will change to 17. You

can delete a selected rule from the table with the command

from the menu. And you can drag a selected rule to a new position

in the table.

Finally, there is one more feature to make it easier to build a rule table

from scratch. If you use the button to run a machine step-by-step,

you will notice that at each step, the rule that will be applied on the next

step is boxed. If there is no rule for the current combination of state and

symbol, then the current state and symbol will appear in a box next to the

button. At this point, just click on to make a rule to handle

the current state and symbol, and set the \Write," \Move" and \New State"

data in that rule to perform the action you want. You can build an entire

rule table in this way, stepping through a computation and making rules as

you need them.
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the machine and make sure you understand how it works. This machine is

the basis for Exercises 2 and 3 at the end of the lab. If you are not sure

your version is correct, compare it to the ready-made version in the Folder

. (Note that the order in which rules appear in the table is

not important.)

Open the �le named , and run the machine a few times to

see how it works.

Make this modi�cation and

let the machine run. Change the speed to maximum to see just how fast

it can go. Why does each digit in the number change twice as fast as the

number to its left?

The operations of incrementing (adding

one to) or decrementing (subtracting one from) a binary number are sim-

ple enough to be done easily by Turing machines.

The procedure for adding one can be described as follows: If the last

digit of the number is a zero, then simply change that digit to a one. If

the last digit is a one, change it to a zero, and \carry" a one to be added

to the next digit to the left. Finally, to add one to a blank space, simply

change that blank to a one. (This can occur when a one is carried beyond the

leftmost digit of the number; the blank should be treated just like a zero.)

For example, 110 + 1 = 111 , 1011 + 1 = 1100 and 11 + 1 = 100 .

A simple Turing machine for incrementing a binary number is found in

the �le . (This is the machine speci�ed in Figure 4.2 in the text.)

This machine must be started on the rightmost digit of the number to which

it will add one. After it is �nished adding one, it returns to this position and

halts.

If you modify this machine so that instead of halting, it returns to state

zero, then it will add one to the tape over and over again forever (or until

you halt it manually). It is, in e�ect, counting.

As described in the text, it is possible to combine an \incrementing" and

a \decrementing" machine into a machine that can add two binary numbers.

Given two binary numbers as input, this machine will repeatedly subtract

one from the second number and add one to the �rst until the second number

becomes zero. At that point, the �rst number will be equal to the sum of

the two original numbers. A machine to do this can be found in the �le

. This machine only works on a tape containing two

binary numbers, separated by one blank space, and it must be started on

the rightmost digit of the second number.

It is also possible to add two numbers in the ordinary way, by adding

digits in corresponding \columns" in the two numbers. The �le

contains a machine that adds two input numbers in this way. As

it adds the second number to the �rst, this machine keeps track of which

columns have already been added by replacing o's and i's with x's and y's.
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two

not easy

When it �nishes, it erases the second number from the tape and changes all

the x's and y's in the �rst number back to o's and i's.

Finally, remember that two numbers can be multiplied by repeatedly

adding the �rst number to itself. The second number tells how many times

the addition is to be performed. The �le contains a

Turing machine that can multiply two binary numbers in this way. Like the

addition machines, it requires two binary input numbers on its tape. After it

computes the answer, it erases the two original input numbers. The number

remaining on the tape at the end of this process is the product of the two

inputs.

To convince yourself that Turing machines can perform non-trivial tasks,

watch these three machines in operation. They can all be found in the folder,

. You don't need to understand every detail of their operation,

but you should get a general idea of how they work.

Modify the Turing machine to make a ma-

chine that will move right until it �nds three x's in a row. To do

this, you will have to add another state|state number 2|with the meaning

\found two x's in a row." In state 1, if it �nds a second x, it will enter this

new state instead of halting. Make a printout of your rule table.

The machine that you constructed in this lab

moves a sequence of symbols one square to the left. Explain carefully how

it works. In particular, discuss the that you, as a human observer,

can see in each of its states.

The machine halts after moving its input string

one square to the left. If you tell it to enter state 0 instead of halting, then

it enters a loop in which it moves its input string to the left forever. It's fun

to watch this at full speed. Try it! Next, suppose you want the machine to

stop when it hits a $. This is a simple modi�cation that requires only one

more rule. Make it so.

Now, here is the real assignment: Suppose you want a machine that will

move a string of x's, y's and z's back and forth between $'s on the tape.

Such a machine can be made (partially) from a \nudge left" machine like the

one you already have and a \nudge right" machine that is very similar.

Construct a \back and forth" machine of this type. Save your machine

in a �le. Turn in both a printout of your rule table and the �le in which your

machine is saved. This problem is ! Ask for help if you need it!

The multiplication machine you looked at in this lab is

rather complicated. Trying to understand its operation is very di�cult if

you don't think in terms of \structured complexity." From a low-level point
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of view, this machine goes through a long, complicated sequence of individual

steps. From a high-level, \black-box" point of view, it just multiplies two

numbers. But to really understand the operation of the machine, you have

to look at it on some intermediate level, where you can see a sequence of

meaningful operations, structured perhaps by loops and decisions. Write a

description of the operation of the \ " machine on an

\intermediate level." When thinking about what is meant by this, consider

the relationship of this machine to the \ " machine.
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The xComputer, which you have used in some

previous labs, is a very simple model computer, but it does demonstrate

many aspects of the basic operation of real computers. This lab introduces

two additional features of the xComputer: the ability to do a limited form

of input/output processing, and the ability to respond to interrupts.

You will have to use a bit of imagination here, since I will not discuss all

the wiring, circuitry, and programming that would be needed to add these

features to the version of the xComputer discussed in the text. In this lab,

you will work on the assembly language level rather than the level of circuits

and control wires.

This lab is based on the xComputer, as discussed in Chapter 3 of

, but it uses features of the xComputer that are not

mentioned in the text. You should be thoroughly familiar with the material

covered in Lab 4 and Lab 5. This lab is meant to illustrate some of the

aspects of real computers that are covered in Section 5.2 of the text. You
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Load Assembler

Memory Display
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The main xComputer window as it appears when the \Use I/O Ser-

vices" option is turned on. For this picture, the sample program was

loaded and run. As it was running, the user typed in \abc" followed by a carriage

return. The characters a, b, and c were echoed to the output, and the carriage re-

turn caused the program to halt.

will �nd background material for the lab there, but for the most part the lab

is self-contained.

To begin the lab, start up the program .

Select the command from the menu. You will

notice some changes in the Console portion of the xComputer window, as

shown in Figure 8.1. Turing on the I/O Services option makes the simulated

xComputer into an essentially di�erent machine that understands several new

assembly-language instructions. To see some of these instructions in action,

open the sample �le and load it into xComputer's memory, using

the command in the menu. You should �nd

in a folder named .

The program uses two new assembly language instructions:

Get-Character (GTC) and Put-Character (PTC), which are used for input

and output. These instructions will only be recognized by xComputer when

I/O Services are turned on. (To see this, set the (under

the menu) to , so that you can see program

in memory in assembly language form. Then turn I/O Services

on and o�. You will see the GTC and PTC instructions in memory only

when I/O Services are on. Make sure I/O services are on, and leave them
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Speed Options

Fast

Run the program . Set the , under the menu,

to speed number 2, . While the program is running, type in some char-

acters and watch what happens. Press return when you want the program

to end. Read the comments in the �le .

on for the rest of the lab.

Here is what happened: When you started the program, a box labeled

\Input Queue" appeared in the Console portion of the xComputer window.

When you type a character, it is entered in that box. (You should think of

the input queue as an additional register or a special area of memory, and

imagine that pressing a key on the keyboard turns on some wires that load

the character you typed into that memory.) When the computer executes

a GTC instruction, the �rst character in the input queue is removed from

the queue, and its ASCII code is placed in the accumulator. If there are no

characters in the queue, then a zero is placed in the accumulator as a signal

to the program that there is no user input waiting to be processed. The

program can then do whatever it wants with the character. In this case, a

PTC instruction is used to output the character. (Output items are simply

added to a list, labeled Output, in the xComputer Console. Think of this

list as a roll of paper on which the computer types the output.)

The program illustrates a typical method for processing user

input. The computer executes a loop to read the user input. The �rst

command in the loop is a GTC instruction, which retrieves an input character

from the queue of characters typed by the user. If no character is found, then

GTC retrieves a zero instead, and the program uses this in the instruction

\ " as a signal to jump back to beginning of the loop with no

further processing. Otherwise, it processes the character. This method of

sitting in a loop, waiting for user input, and processing it when it occurs

is known as . It is an e�ective and simple means of organizing a

program, but at full computer speeds, the program spends most of its time

just waiting for the user to press a key.

In the program, most user input is simply echoed to the out-

put list. However, a carriage return is treated di�erently. When the program

reads a carriage return, it jumps to a Halt instruction at the end of the pro-

gram, and the program ends. The program implements this feature with the

three instructions

LOD ch

SUB-C 13

JMZ done

If the character, , is a carriage return|with an ASCII code of 13|then

the JMZ instruction transfers control to location , where there is a HLT

instruction.

Similar tests for other special characters can result in a sophisticated
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EchoNums

EchoNums

num

EchoNums

EchoChars EchoNums

The Most Complex Machine

Open the sample program . Read the comments, then load

the program and run it. (Don't forget to set the PC to zero before trying

to run it!) Try typing in \123.", including the period. It would be useful to

run this program at various speeds in order to trace how it works. If you run

it at full speed and watch location 35 ( ), you can see how the number

changes as you type. When you run the program at lower speeds, it will

take some time for each character to be retrieved from the input queue and

processed.

program. In the second sample program for this lab, , ch is �rst

tested to see whether it is a return, then to see whether it is a period, then

to see whether it is in the range or characters from \0" to \9". Each of these

cases results in a di�erent action. This program allows the user to type in

an integer as a sequence of digits. When the user presses the period key, the

number is written to the output list.

uses a Put-Integer (PTI) command for output. The PTI

command writes the number in the accumulator to the output list in the

form of a signed integer (in the range 32768 to 32767). In addition to PTC

and PTI, there are two more commands for output: Put-Unsigned (PTU),

which outputs an unsigned integer (in the range 0 to 65535), and Put-Binary

(PTB), which outputs a number in binary form. GTC is the only command

for input; whatever the user types, you have to read it character by character

and process it one character at a time.

Many modern computer programs, including all the Macintosh programs

used in these labs, are based on a more sophisticated version of the polling

loop used in and . The main di�erence is that in

addition to user input in the form of typed characters, there are several

other types of to which the program must respond. An event is

generated, for example, when the user clicks the mouse button or when the

user chooses a command from a menu. The operating system maintains

an that contains all the events that have occurred and that

are waiting to be processed. The program executes a loop that repeatedly

performs the actions: Get the next event from the event queue, and process

that event. This type of loop is called an .

When you turn on

I/O Services, in addition to enabling input/output instructions, you also

turn on interrupt handling. The idea of an is that a signal on

some designated control wire causes the CPU to interrupt what it is doing

in order to handle whatever condition caused the interrupt to occur. After

handling the interrupt, the CPU returns to whatever it was doing when the

interrupt was signaled. Interrupts are covered briey in Subsection 5.2.2 of

.
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Speed Fast

Next

Open the sample program . Read the comments,

load the program, and run it with the set to . (Don't forget to set

the PC to zero before trying to run it!) The program \counts" by repeatedly

adding 1 to memory location number 5. When you type a character, an

interrupt handler will get the character you typed and write it to the output

list. Try running the program at speed number 6. You will have to click

on the button (or press return) to execute each step of the fetch-and-

execute cycle. Watch carefully to see what happens when an interrupt occurs

and when an RTI instruction is executed.

For the xComputer, you should imagine that an interrupt control wire is

connected to the keyboard and that anytime the user types a character, an

interrupt is signaled. Ordinarily, the xComputer responds to this interrupt

by adding the typed character to the input queue and then immediately

returning to its regular processing. However, it is possible to set up an

to respond to keyboard interrupts.

An interrupt handler is simply a sequence of instructions, stored in mem-

ory like any other program. The di�erence is that the interrupt handler is

executed . (This just means that it is executed at unpre-

dictable times, whenever the user happens to type a character. The timing

of the interrupt handler is not \synchronized" with the timing of the rest of

the program.)

You have to tell the computer where the interrupt handler is located in

memory. This is done with an Interrupt-Handler (INH) instruction. For ex-

ample, the instruction \ " speci�es that there is an interrupt handler

starting at location number 500. When an interrupt occurs, the xComputer

will �rst put the typed character in the input queue. It will then jump to

the location speci�ed by the INH instruction. The interrupt handler must

retrieve the character from the input queue with a GTC instruction. The

interrupt must end with a Return-from-Interrupt (RTI) instruction. When

the computer executes this instruction, it returns to whatever it was doing

when the interrupt occurred.

(Actually, that is not precisely true: If the user types a second character

while the interrupt handler is executing, the typed character will be added

to the queue, but the computer will jump to the beginning of the inter-

rupt handler|the interrupt handler cannot itself be interrupted. When the

computer executes an RTI instruction, it checks whether there is another

character waiting in the queue. If so, it jumps to the start of the inter-

rupt handler to process that character. When the queue is empty, the RTI

instruction sends the computer back to the main program.)

When an interrupt occurs, the Count register is set to 0 and the PC is

set to the address of the interrupt handler (6 in this case). Although you

won't see it, the computer also saves the values of all the registers. When the

interrupt handler ends, the saved values of all the registers are restored, so
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Fastest

Graphics

Exercise 1:

Simple Interrupt

Handler

EchoNums and Background Process

EchoNums

EchoNums

num

Open the sample �le , read the com-

ments, load the program and run it. (Don't forget to set the PC to zero before

trying to run it!) Try running it at speed with the memory display

set to . The foreground processing is identical to the

program, except that it is implemented using an interrupt handler instead of

a polling loop. Try typing some numbers, ending each number with a period.

The background process is a complicated program that computes arbitrarily

large powers of 3; the details are not important.

Modify the program so that when the user

presses \d", the number in location is divided by 2, and when the user

that the program can continue as if the interrupt had never occurred. (The

numbers in the registers constitute the of the computer, as de�ned in

the text.)

Interrupts are a very important part of computer processing. In real

computers, there can be many di�erent types of input. Programmers don't

usually need to deal with interrupts, since they are generally handled by the

operating system. For event loop programs, the operating system adds an

appropriate event to the program's event queue when an interrupt occurs.

The program can retrieve that event and do any necessary processing at its

leisure. The only disadvantage to this is that a user action that generates an

interrupt might not get an immediate response, if the program is busy doing

something else.

As noted above, a program that uses

a polling loop often wastes most of its time just waiting for user input. It

would be nice if there were a way to use that wasted time. Interrupts provide

a method for doing so. Instead of sitting in a loop waiting for user input, the

program can use an interrupt handler to process user input when it occurs.

When there is no user input to process, the computer can work on some other

task. From the point of view of the user, that task is secondary and is being

performed in the . The task|that is, processing

the user's input|is given priority, since it can interrupt the background task

at any time.

You can see this foreground/background behavior in the

program: The background task is counting, while the foreground

task is copying user input to the output list. It is, of course, possible to do

more interesting things both in the foreground and the background.

In the exercises for this lab, you will write programs that do input/output,

interrupt handling, and background processing.
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Exercise 2:

Exercise 3:

Exercise 4:

num

num

EchoNums with Background Processing

twice

EchoNums and Background Process

EchoNums and Background Process

Background Process

presses \m", the number in location is multiplied by 2. (You can use

an SHL instruction to do the multiplication and an SHR instruction to do

the division.) The program should still write to output when the user

presses \.". Write a short essay discussing how a polling-loop program can

do any desired processing for each possible typed character.

A program can do output even if it doesn't have any input.

Write a program that will write the letters of the alphabet|A, B, C, , Z|

to the output list. Your program should use a loop.

Write an essay explaining what the xComputer does when

you run the program and type in

\123.".

Write a program that does background processing while

it uses an interrupt handler to perform \binary to decimal conversion" as

its foreground task. The user can type in a binary number as a sequence of

zeros and ones. When the user types a period, the program should output the

number |once as a binary number and once as an unsigned integer. The

user can then start entering the next number. If the user types any character

except for zero, one, or period, the program should output an exclamation

point (!) as a signal that the user has entered an illegal character. Your

program will be very similar to , but the

computation that it does when it reads a zero or a one will be much simpler.

As your background task, you can use the same program used in the �le

. You'll �nd a copy of this program in

the �le . But if you did Lab 6, you might want instead to

use the program you wrote for that lab to compute a list of prime numbers

as your background process.
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About this Lab:

Lab Number 9 for

Introduction To xTurtle

The Most Complex Machine

The Most Complex Machine

The Most

Complex Machine

The Most Complex Machine: A Survey

of Computers and Computing

The Most Complex Machine

This lab and the software used in it accompany

, an introductory computer science textbook by David Eck

(published 1995 by AK Peters, Ltd., 289 Linden Street, Wellesley, Massachusetts 02181;

ISBN 1-56881-054-7). Support for the text, software and labs is available on the World

Wide Web at http://math.hws.edu/TMCM.html. David Eck can be reached at the e-mail

address eck@hws.edu. This lab is protected by copyright but can be freely distributed for

private, individual use, provided that no charge is made for it other than a reasonable fee

for duplication and media. However, I stipulate that neither this lab nor the software used

in it should be used in a course unless the textbook, , is also

adopted for use in that course.

by David J. Eck

This lab is an introduction to a high-level pro-

gramming language called . This is a language created to be used

with , but it is in the mainstream of high-level

languages, along with Pascal, Ada and C. It incorporates some ideas common

to all these languages: variables, assignment statements, loops, if statements

and subroutines. (You will �nd that you are already familiar with the basic

ideas because of your work in previous labs.) The xTurtle language also

contains special-purpose commands for doing \turtle graphics." These com-

mands can be used to draw pictures on the computer screen. In this lab, you

will learn about the basic xTurtle commands, about loops and if statements,

and a little bit about variables. Future labs will cover programming in more

detail, including the use of subroutines.

This lab covers some of the same material as Chapter 6 of

. However, the lab is meant as a self-contained introduction

to this material. It would be useful but not essential to read Chapter 6 before

doing the lab.
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position heading

xcoord ycoord

parameter

xTurtle

how far

how many degrees

for-

ward turn PenUp PenDown clear home

As an exercise, you should try to make the turtle draw two separate,

parallel lines, like this:

If you make a mistake, you can use the command \clear" to clear the screen

and the command \home" to return the turtle to its original position and

orientation (at the center of the screen, facing right).

For this lab, you will use a program called

. Find the program and start it up by double-clicking on the program

icon. You will see a window like that shown in Figure 9.1. The \turtle" is

shown as a small black triangle. The turtle has a and a .

Its heading is the direction it is facing, given as a number of degrees between

180 and 180; the turtle has a heading of zero when it is facing to the right,

a heading of 90 when it is facing upwards towards the top of the screen, and

a heading of 90 when it is facing downwards. Its position is given by two

numbers: an , or horizontal coordinate, and a , or vertical

coordinate.

The window in Figure 9.1 shows a twenty-by-twenty square in which the

turtle can move and draw. This square has horizontal coordinates from 10

on the left to 10 on the right, and it has vertical coordinates from 10 at

the bottom to 10 at the top.

The turtle starts out in the center of the screen|at the point (0,0)|

facing to the right. It can obey commands such as \forward(5)," which tells

it to move forward �ve units, and \turn(120)," which tells it to rotate in place

through an angle of 120 degrees. (It turns counterclockwise if the number of

degrees in positive and clockwise if the number of degrees is negative.) The

number in parentheses is called a for the command; you can

substitute any number you want. The parameter in a \forward" command

tells the turtle to move forward, while the parameter in the \turn"

command tells it to turn.

The turtle can actually move outside its basic 20-by-20 square. You can

expand the window to see a larger region, and the the scroll bars allow you

to view any part of a 60-by-60 square. But if the turtle moves outside of

that 60-by-60 square, you won't have any way of seeing it.

The turtle can draw a line as it moves. You can think of it as dragging a

pen that draws as the turtle moves. The command \PenUp" tells the turtle

to \raise the pen." While the pen is raised, the turtle will move without

drawing anything. The command \PenDown" tells the turtle to lower the

pen again.

Here are the other basic turtle graphics commands (in addition to

, , , , and ). In these commands, and
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back

opposite back

forward back Back

forward

face

face face

face

turn face turn

face

The graphics window from the program xTurtle. The turtle draws in

the lower part of the window. Commands for the turtle can be typed into the box at

the top of the window. The turtle executes these commands when you press return

or click on the \Do it" button. In this illustration, the turtle has already executed

the commands shown in the input box.

are parameters that can be replaced by any number when you use the

command.

( ) tells the turtle to back up units, that is, to move units in

the direction to its current heading. For example, \ (3) tells the

turtle to back up three units. Negative numbers are allowed as parameters for

both and . ( ) is provided only as a convenient shorthand

for ( ).

( ) makes the turtle turn to a heading of degrees from heading

zero. For example, (90) points the turtle straight up, ( 90) points

it straight down, and (180) points it to the left. Note the distinction

between and : speci�es a change in direction from the current

heading, while speci�es a new heading without any reference to whatever

the old direction might have been.
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Always Hide Turtle Options

1)

2)

3)

4)

Options

Draw some pictures using these basic commands. Here are a few things

you can try, for example

moveTo

move moveTo turn

face moveTo

move

from the current location

circle

arc

arc circle

HideTurtle ShowTurtle

HideTurtle

ShowTurtle

circle(7) circle(5) circle(3) circle(1)

arc(5,90) arc(-5,-90) arc(5,90) arc(-5,-90)

forward(5) turn(120) forward(5) turn(120) forward(5)

forward(7) turn(90) forward(5) back(10)

( , ) just tells the turtle to move from wherever it happens to

be, to the point with coordinates and .

( , ) is related to ( , ) in the same way that ( ) is

related to ( ). That is, while ( , ) says \move from the current

location, whatever it is, to the point with coordinates ( , )," ( , ) says

\move units horizontally and units vertically ."

Note that these commands do not depend upon or change the heading of the

turtle.

( ) draws a circle of radius . You should think of the turtle moving

in a circle starting from its current position and returning to that position

at the end. Note that the turtle position is on the circle. If is positive, the

turtle curves to its left as it draws the circle, and the center of the circle is

units to the left of the original turtle position. If is negative, the turtle

curves to the right, and the center of the circle is to the right of the original

position.

( , ) draws part of a circle of radius . A full circle would be 360

degrees; ( , ) draws an arc of degrees. As with ( ), the turtle

curves to the left if is positive and to the right if is negative. If is

negative then the turtle will \back up" along an arc. Note that the turtle

changes position and heading as it draws.

and make the turtle (the small black triangle)

invisible and visible. The turtle can still draw while it is invisible. (Note

also that there is a menu command in the

menu. When this option is set, the turtle will be invisible whenever a pro-

gram is running, regardless of whether the program uses any or

commands.)

:

(Note, by the way, that you can type in several commands at once, or you can

type in one command at a time, pressing return after each command. Note

also that after a command is executed, the contents of the command-input

box are hilited, so that as soon as you start typing, the previous command

will be erased and replaced with what you type. And �nally, note that you

can change the speed at which the turtle follows a sequence of commands

using the menu.)

The power of a computer comes from its ability to execute

a program. A program is a sequence of instructions that can include features
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xTurtle

Necklace

random walk

random walk

LOOP

arc(5,20)

circle(-0.5)

EXIT IF heading = 0

END LOOP
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loop

end loop

exit

exit

end loop

Run Run

if

Options Run

declare

Add

commands to the program, before the beginning of the loop, to move to the

point (0, ), without drawing a line.

Run the program several times.

such as loops, decisions and subroutines. The program allows you

to write programs, to save programs in �les, and to reuse previously saved

programs. As an example, open the �le .

This �le contains a short program that shows how a loop can be used.

The program itself is as follows:

In addition, the �le contains a lot of . In an xTurtle program,

a comment is anything enclosed between braces, and . Comments are

meant for human readers of the program and are completely ignored by the

computer.

In an xTurtle program, a loop consists of the word , then a sequence

of instructions, then the words . One of the instructions must be an

statement, which gives a condition for ending the execution of the loop.

When the program is executed, the computer will execute the statements in

the loop repeatedly. Each time the statement is executed, the computer

tests the condition speci�ed by that statement. If the condition is satis�ed,

the computer jumps out of the loop. (Ordinarily, after exiting from a loop,

the computer jumps to whatever statement follows the . In this

example, that just means jumping to the end of the program.)

Run the program using the command from the menu. You

will �nd that part of the picture is drawn o� the screen. This would be �xed

if the turtle started at the point (0, 5) instead of at the point (0,0).

5 Then, run the program again. Use the

modi�ed version of this program as your starting point for doing Exercise 1

at the end of the lab.

As another example, open the �le . The program in this �le

shows several new features of the xTurtle programming language, including

statements, variables and assignment statements. This program makes

the turtle do a \random walk" in which it repeatedly moves in a randomly

chosen direction. Note that you can change

the speed of the turtle using the menu, and that the menu

contains commands to interrupt or terminate a program that is being exe-

cuted. Read the comments on the program, which will give you some idea

about how it works.

A is just a memory location with a name, which can be used

to store a value. In xTurtle, you give a name to a memory location with a

statement, as illustrated in the program . Once you
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if

if end if

if

variable name value

TellUser

AskUser

betAmount

betAmount

AskUser

x := 17

newAmount := oldAmount

cost := length width costPerSquareFoot

"Hello"

DrawText("Hello")

Hello

TellUser("Hello")

Hello

AskUser("How much do you want to bet?", betAmount)

How much do you want to bet?

have declared a variable, you can store a value in it with an assignment

statement, which has the form

:=

The value on the right can be given as a number, as another variable, or as

a mathematical formula. For example:

An statement, which is used to decide among alternative courses of

action, begins with the word and ends with the words . The exact

rules for using statements are rather complicated, and are covered in detail

in the text, but you should be able to get the basic idea by looking at the

example in this sample program. The random walk program is used as the

basis for Exercise 2 at the end of the lab

Any real programming language needs to provide

some way for a program to communicate with the person who is using the

program. The xTurtle programming language provides only minimal support

for input and output, but what it provides is enough for a program to have

a simple dialog with the user.

There are two commands for output (sending information from the com-

puter to the user), and one command for input (getting information from

the user into the computer). All of these commands use , which are

sequences of characters enclosed in quotes, such as: . The command

will print the string in the xTurtle graphics window, at the current

turtle position. The command

will display in a standard Macintosh \dialog box," along with an OK

button. The user reads the string and then presses return or clicks on the

OK button to get rid of the dialog box. The command has no e�ect

on the picture in the graphics window. Finally, there is a more complicated

command, , that can be used to allow the user to enter a number;

the number entered by the user will be stored in a variable. For example,

will display a dialog box with the string \ "

and a box where the user can enter a number. The number entered by the

user will be stored in the variable , so that the program can use

it. Of course, you have to declare the variable before you can use

it in an statement.
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circle
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Random Walk
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Exercise 1:

Exercise 2:

Exercise 3:

if

loop

TellUser("You bet $#betAmount; you win $#winnings.")

You bet $25; you win $75.

arc(5,2) circle(-2) arc(5,5)

circle(7)

forward(5) back(5)

All of these commands have a nice feature that allows you to use the value

of a variable inside a string. If a string includes the character #, then that

# must be followed by the name of a variable. When the string is displayed,

the # and the name will be replaced with whatever value is stored in that

variable at that time. For example, if and are variables,

then

might actually display \ ".

All of this is illustrated in the sample program , which you

should open, read, run and understand. Exercise 3 below is based on the

I/O capabilities of xTurtle.

(0 5)

90

120

Earlier in the lab, you modi�ed the program so

that it draws a picture starting at instead of at (0,0). For this exercise,

start with the modi�ed version of that program. Try changing the radius

in the command and the number of degrees in the command to

various values. For example, try \ " and \

". Also try replacing the command with any other command

or sequence of commands that will leave the turtle with the same position

and heading that it starts with, such as \ ". You might

also want to change the radius used in the command. Turn in a printout

or hand-written listing of the program that makes the prettiest picture you

come up with. (Hopefully, this will use something other than circles as the

\beads" on the \necklace.")

In the sample program , which you used

earlier in the lab, the computer chooses one of the four directions 0, 90,

and 180 at random. Modify the program so that it chooses one of the

three directions 0, 120 and instead. It should have an equal chance of

choosing any of these directions. Turn in a print out or hand-written listing

of your program. (Make sure you test it!)

With what you have learned in this lab, you can now

write a simple guessing game program (which will use none of the graphical

capabilities of xTurtle). Write a program in which the computer chooses a

random integer between 1 and 100, and the user tries to guess the number.

Each time the user makes a guess, the computer should (honestly) tell the

user \Sorry, your guess is too high," \Sorry, your guess is too low" or \You

got it." You can use an statement to pick out the appropriate message.

Use a to allow for repeated guesses. The loop will end when the

user guesses correctly. Your program can begin like this, before you begin

the loop:
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Indent

Edit

end if

Exercise 4:

DECLARE answer

DECLARE guess

answer := randomInt(100)

YesOrNo("Do you want to play another game?", response)

(If you want to improve your program, you might count up the number of

guesses that the user takes, and report that number at the end. You might

also want to allow the user the option of playing another game. In that

case, you will need another I/O command that I didn't mention above. The

command

will store a zero in the variable if the user answers no and will store

a one in that variable if the user answers yes.)

Your program should include comments. Like the sample programs, it

should use indentation to show the structure of the program. (The

command in the menu can be used to automatically indent a program;

this feature is also useful for �nding certain types of errors in a program,

such as a missing .)

Turn in a printout or hand-written listing of your program.

Write a short essay comparing the assembly language of

xComputer with the high-level language xTurtle. For example, you could:

compare the way loops are constructed in each language; compare labels

in assembly language to variables in xTurtle; and compare the way com-

putations are done in assembly language with the way they are done by

assignment statements in xTurtle.
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This lab and the software used in it accompany

, an introductory computer science textbook by David Eck

(published 1995 by AK Peters, Ltd., 289 Linden Street, Wellesley, Massachusetts 02181;

ISBN 1-56881-054-7). Support for the text, software and labs is available on the World
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address eck@hws.edu. This lab is protected by copyright but can be freely distributed for
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for duplication and media. However, I stipulate that neither this lab nor the software used

in it should be used in a course unless the textbook, , is also

adopted for use in that course.

by David J. Eck

This lab continues the study of programs. The

emphasis here is on how complex programs can be developed to perform

speci�ed tasks. An organized approach to programming is necessary for all

but the most simple programs. Complex tasks can be broken down into sim-

pler tasks, and complex programs can be built up out of simple components.

The problem is how to determine what components are needed and how to

piece them together.

Before beginning this lab, you should be very familiar with the material

in Chapter 6 of , especially Section 6.3. The

idea of \preconditions and postconditions" introduced there is particularly

important, and the example of \nested squares" from that section is used in

the lab. This lab also briey introduces , which are covered in

Chapter 7 of the text.

The �le , in the folder

, contains a program for drawing a set of squares nested inside one

another, as given in Figure 6.10 of the text.
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Options

comments (which were not in the text), and run the program.

Five nested squares and the results of four incorrect attempts to draw

them.

For this

example and for most of this lab, I strongly suggest that you use the

menu to reduce the speed of the turtle; this will make it easier for you to see

what is going on.

As explained in the text, the key to writing this program was making

sure that the for drawing each square were set up properly.

The preconditions are the things that must be true at a given point in time

for the next section of the program to be executed correctly and to have the

desired e�ect.

Figure 10.1 (taken from Figure 6.9 in the text) shows the correctly drawn

squares and the results of �ve incorrect attempts to draw them. In each

case, the error can be traced to the failure to set up one or more of the

preconditions correctly. Exercise 1 at the end of the lab asks you to determine

what the error is in each case. Exercise 2 also deals with preconditions.

Preconditions are things that must be true at a

given time for the program to continue correctly. are things

that are true at a given time because of what has been done by the

program so far. A common way for programmers to think about programs

is to ask \At this point in the program, do the postconditions from what

comes before match up with the preconditions for what is done next."

Figure 10.2 shows a drawing of a simple \staircase." Suppose that you

want a program to draw such staircases. Let's add some speci�c requirements

for the program: (1) The user will be able to enter the number of steps that
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forward back turn

move face moveTo

postcondition

forward PenUp

forward

turn

Two staircases, one with six steps and one with �ve. The staircase at

the right was drawn after the turtle had turned to a heading of thirty degrees.

the staircase will contain. (2) Each \step" in the staircase is one unit wide

and one unit high. (3) The orientation of the staircase will depend on the

heading of the turtle (as shown in the second example in the �gure); this

means that it should be drawn using only the commands , ,

and , and avoiding the commands and . (4) After the

staircase is drawn, the position and heading of the turtle will be the same

as they were when the drawing begins. (Note that condition number 4 is

actually a for the program as a whole.)

The program will include a loop. Each execution of the loop will draw

one of the staircase's steps. Before drawing each step, the turtle must be

facing in the right direction; this is a precondition. After drawing the step,

the turtle has changed direction; this is a postcondition. You have to include

commands that will provide \splicing" from the actual postcondition to the

desired precondition.

In addition to the steps, the staircase contains two long lines that must

be drawn outside the loop. At the end of all this, the turtle must return

to its initial position and heading. It's not easy to get all the details right

unless you keep careful track of postconditions and preconditions. Exercise 3

asks you to write this program.

A subroutine is|more or less|a small

program, made into a black box and given a name. Some subroutines, such

as and are prede�ned; others are written by a programmer as

part of a larger program. They are an essential tool for organizing complex

tasks.

Most subroutines have , such as the 9 in \ (9)" or

the 30 in \ (30)." Parameters allow subroutines to receive information

from the rest of the program or to send information back. Suppose that

we want to turn the staircase program described above into a subroutine.
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and this remark is absolutely vital for understanding subroutines

parameter

Spirals Subroutine spiral

de�ne use

spiral spiral

Nested Squares

Quadratic

precondition

Then| |it

would no longer make sense to get the input from the user, since that would

greatly limit the generality of the subroutine. Instead, the number of steps

would probably be provided as a . From the \point of view of the

subroutine," the parameter is like input coming from \somewhere outside,"

just as input from the user comes from outside the program.

The �le de�nes a sample subroutine named .

The �le includes comments that give some information about the syntax of

subroutines in xTurtle. If you apply

the command to this �le, it will look like nothing has happened! This is

because all the �le does is a subroutine; it doesn't that subroutine.

Before the �le is run, the computer has no idea what the word \spiral" means;

after the computer compiles the subroutine de�nition, it will know what to

do with commands like \ (61)" and \ (89)." Such commands can

be added to the �le after the subroutine de�nition, or they can be typed

directly into the data-input box of the xTurtle Graphics window after the

�le is run.

Exercise 4 below asks you to convert the staircase program you will write

for Exercise 3 into a subroutine.

1 1

Open this �le and read the comments.

Try it; some of the pictures you can make are rather pretty.

Consider each of the pictures , , and in Figure 10.1,

and determine what small change in the program will pro-

duce that picture. In each case, it's a question of removing one or more

statements from the original program. For each of the pictures, record the

change that you made, and determine which of the preconditions are causing

the problems. Turn in your answers.

The �le contains a program that solves the

\quadratic equation." Open this �le and run the program. It runs �ne,

but there can be a problem if the values of the variables , and are

changed. Try changing from to , and running the program again; the

program will crash with an error. When it does, the blinking cursor will be

moved to the point in the program where the error occurred. Why does the

program crash? What is the that is not properly checked in this

program? How can the program be modi�ed so that it does something more

reasonable than crashing when the precondition fails to hold? Turn in your

answers to these questions and a printout of the modi�ed program.

(Note: You are being asked simply to write a program that handles

the case C = 1. Your program should handle any possible values of A, B

and C.)

Write a program to draw a staircase, as described above.

The program must satisfy the four requirements that are listed there. Start
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Exercise 4:

end sub

DECLARE NumberOfSteps

AskUser("How many steps?", NumberOfSteps)

DECLARE count

SUB stairs(NumberOfSteps)

END SUB

loop

stairs(3)

stairs(5)

stairs(7)

turn(30)

exit if heading = 0

end loop

your program with these three lines:

The variable named should be used as a counting variable in the pro-

gram, just as the variable of the same name is used in the

program. (It turns out to be a little easier to start drawing the staircase at

the top rather than at the bottom.)

You should think about preconditions and postconditions as you write the

program. The comments that you include in your program should discuss

speci�c preconditions and postconditions for various parts of the program,

and explain how they were used|or could have been used|in developing

the program. Turn in a printout of your program.

Convert the program you wrote for Exercise 3 into a sub-

routine. To do this, remove the �rst two lines of the program, as they were

given in Exercise 3. Replace them with:

Add the line

at the end of the program. That's it! (That is, that's it provided that

your solution to Exercise 3 was correct|including leaving the turtle in its

original position and heading at the end of the program.) After running

the modi�ed program, you will be able to use commands like (5) to

draw a staircase with �ve steps. To make a more interesting picture, add the

following lines at the end of your modi�ed program, after the that

ends the subroutine, and then run the program:

Turn in a printout of the picture you produce. Also turn in a brief essay

explaining: (1) why the line \SUB stairs(NumberOfSteps)" replaces the �rst

two lines from the original program, including the declaration of the variable

, (2) why the variable remains as an internal part of

the subroutine, and (3) what this exercise teaches you about subroutines.
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by David J. Eck

Subroutines were introduced briey in the previ-

ous lab. This lab will continue the study of subroutines. The lab concentrates

on the idea of a subroutine as a black box and on recursive subroutines that

call themselves, either directly or indirectly.

You should be familiar with the material from Chapter 7 of

, especially with the material on recursive subroutines in

Section 3. The Koch curve and the binary tree introduced in that section

will be used in the lab.

You are familiar with the idea of a subroutine

as a black box. When you use prede�ned subroutines such as and

, you don't need to know exactly how they work. All you need

to understand is how to use them and what they will do. User-de�ned

subroutines can also be used as black boxes, provided that someone else

has written them for you. (But remember that \not having to know what's

inside" is only half of the black box story! When you write a subroutine

yourself, you are working inside the box, trying to make it work the way it's
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Options

Kill Program exit if

multiArc(5,40)

turn(-40)

multiforward(3)

multicircle(2)

LOOP

multiforward(1)

face(randomInt(360))

EXIT IF 1=2

END LOOP

Symmetry Subs Files for

Lab 11

forward circle

multiForward

forward

Symmetric Subs

multiForward dist

multiBack dist

multiArc radius degrees

multiCircle radius

multiMove dx dy

multiMoveTo

Symmetry Subs

Symmetry Subs

Run the program . Then type the following commands

into the input box of the xTurtle Graphics window, pressing return after you

enter each command:

Try some other commands. For a more complicated picture, you can add

commands at the end of the window, and then run it again.

Try this with the simple loop:

It is a good idea to run this with the option \Autoscroll to Show Turtle" in

the menu turned o�. You will have to end the program with the

command. (Do you see what the line \ 1=2" does in

this program?)

supposed to, without worrying for the moment exactly what role it will play

in a larger program. The real point of black boxes in program design is that

they split the problem into manageable subproblems.)

To start this lab, open the �le in the folder

. This �le contains the de�nitions of six subroutines for drawing sym-

metric pictures. These subroutines are meant to be used in the same way

as the usual drawing subroutines such as and . For example,

the subroutine will draw the same line that would be drawn

by , and it will leave the turtle in the same position and heading at

the end. However, in addition to this line, it will also draw the seven addi-

tional lines that can be obtained by reecting the original line horizontally,

vertically and diagonally.

To see how this works, run the program . Nothing ap-

pears on the screen, since all the program does is de�ne some subroutines,

but after running the program, you can use the subroutines

( )

( )

( , )

( )

( , )

( , )

in addition to all the usual built-in subroutines of xTurtle. (When using

these subroutines, you can use actual numbers, variables or formulas as pa-

rameters.)
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You can try other sets of commands using the \multi" subroutines. You

might try converting the random walk exercise from Lab 9 (the one that

produced triangles on the screen) to use . Exercise 1 at the end

of this lab asks you to turn in one of the pictures you create.

Section 7.3 in

the text introduces the idea of recursive subroutines using the example of a

tree. The program for that example is in the �le in the folder

. Nothing will happen, since the �le only

de�nes some subroutines. The main subroutine de�ned in the �le is .

If you type this into the command-input box and press return, you will be

asked to specify a complexity level, and then a tree will be drawn with that

many levels of branching.

The other example from Section 7.3 in the text is the Koch curve, which is

a way of getting from one point to another (with a lot of detours).

A subroutine for drawing Koch curves

can be found in the �le . The main subroutine in this �le is

called .

Exercises 2, 3 and 4 deal with these recursive subroutines.

+ 1

Open and run this �le.

Be sure to read about this example in

, or you won't understand what is going on!

Again, you

should read about this in the text!

Open the �le, run it, and try out TestKoch for complexity

values of 0, 1, 2, 3, 4, and 5. The �le also has a subroutine called

that you should try.

Turn in a printout of one of the pictures you made using

the subroutines from the �le. Along with the picture, turn

in your answers to the following questions: The mathematics used in the

symmetry subroutines is not trivial; how much did you need to know about

this mathematics to produce your picture? What point about subroutines

does this illustrate?

Open and run the �le so that you can use the sub-

routine . Use this subroutine to draw trees of complexity 0, 1, 2,

, 8. (Hide the turtle for the larger complexity values.) Given com-

plexity value, , determine how many di�erent straight line segments there

are in a tree with that complexity. For small values, you can just count

the lines. For example, if the complexity is 1, the number of line segments

is 3|each branch is a single line, and the trunk is the third line. However,

you are being asked for a formula that will give the number of line segments

for any value of . Whatever form your answer takes, you should be able to

use it to predict the number of line segments for any given complexity level.

One way to approach this is �rst to determine how many lines are

added to the tree when you go from a tree of complexity to one of com-

plexity . Then use that to �gure out the total number of line segments.
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Exercise 3:

Exercise 4:

Another approach is to \think recursively": What exactly a tree of com-

plexity ?

Turn in your answer together with explanation of your reasoning. If you

don't come up with an answer, you should talk about how you approached

the problem, what ideas you had and what partial results you obtained.

The text notes that you can add randomness to a Koch

curve by programming the subroutine to decide randomly whether to detour

to the left (using turns of 60, and 60) or to the right (using turns of

, 120, and instead). Make this change to the subroutine in

the �le , and try it out. Turn in a printout or hand listing of

the modi�ed program. (When you have made the change, the

subroutine will produce a \Koch Island" instead. Try it!)

The idea of \detouring" used in making Koch curves can

be used to make other interesting fractal pictures. In a Koch curve, the idea

is to replace a straight line with a line containing a \triangular detour," like

this:

Suppose that a \square detour" were used instead, looking like this:

What would the resulting picture look like, for higher degrees of complexity?

Find out by rewriting the subroutine to use square detours instead of

triangular detours. (Start with a fresh copy of the �le .) Turn

in a printout or hand-listing of your subroutine.
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adopted for use in that course.

by David J. Eck

One of the most common operations performed

by computers is that of a list of items. An example of this would

be sorting a list of names into alphabetical order. This lab deals with two

natural questions: How can sorting be done? And how can it be done e�-

ciently?

Sorting is discussed as one example in Section 9.3 of

, which deals with the . Although some of

the material from that section is repeated in this worksheet, the background

material and motivation is not repeated here. So, you should read section

9.3 before doing the lab.

Recall that an is an unam-

biguous step-by-step procedure for solving a problem, that is guaranteed to

terminate after a �nite number of steps. For a given problem, there are

generally many di�erent algorithms for solving it. In this lab, you will see

�ve remarkably di�erent algorithms for sorting a list. Each algorithm solves

the sorting problem in a di�erent way. You will see how each algorithm
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Method

Next

Control

The main window from the program . The sixteen bars are

in a random order that will be di�erent each time the program is started and each

time a new sort is begun. The buttons on the left of the window are used to control

the sorting procedure. There is space on the bottom of the window for two informa-

tional messages that describe each step in the sort. The sorting algorithm to be used

is indicated in the title bar of the window

works, and you will also see that some algorithms are much more e�cient

than others.

The program you will use in this lab is called . This program has

two di�erent modes of operation, a \visual" mode in which you can watch

as bars of di�erent lengths are sorted, and a \timed" mode in which you can

measure the e�ciency of an algorithm as it sorts large numbers of items.

When the program �rst starts up, it is in visual mode, displaying a win-

dow like that shown in Figure 12.1. The visual mode is used in the �rst part

of the lab.

The �ve sorting algorithms you will be looking at are: Bubble Sort, Selec-

tion Sort, Insertion Sort, Merge Sort and QuickSort. The sorting method to

be applied by the program is chosen using the menu. (If you select

a new method while a sort is in progress, the new method will be applied to

the sort; the sort that is in progress will continue using the previously

selected method.)

When you click on the button labeled \Next" (or choose from the

menu), the program performs one step in the sort. The step is

described by one or two lines of text at the bottom of the window. The

bottom line, if present, describes an individual step; the top line describes

the overall goal of a sequence of steps.

There are two basic operations performed by the program: two
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Speed

Visual/Fast

Start up the program and change the sorting method to \Selec-

tion Sort." Use the \Next" button repeatedly, to completely sort the sixteen

bars into increasing size. Read enough of the comments at the bottom of the

screen to understand what is going on.

Once you have begun to understand Selection Sort, it might be useful to

watch it at higher speed. Instead of pressing the Next button for each step

of the sort, you can press the Go button to have the computer perform the

sort automatically. There are two visual speeds for you to watch; you can

change speeds by using the third and fourth commands in the menu.

Try watching Selection sort using the speed. The automatic

mode of is meant to help you get an overall \feel" for a sorting

algorithm, once you have already begun to understand it by going through

the sort step-by-step.

items to see which is largest, and an item from one place to another.

Sorting consists of these two operations performed over and over (plus some

\bookkeeping," such as keeping track of which step in the sort the computer

is currently performing). Sometimes, the program has to exchange or

two items. It takes three copy operations to perform a swap: (1) Copy the

�rst item to a special location called \Temp", (2) copy the second item into

the �rst location, and (3) copy the item from Temp into the �rst location.

Whenever the program compares two items, it draws a dotted box around

each of them. When it copies an item, you will see that item move. Further-

more, the program counts the number of comparison and copy operations

that it performs. The number of comparisons and copies is one way of com-

paring di�erent sorting algorithms.

Selection Sort is one of the easiest sorting algorithms to understand. The

idea is simple: Look though all the items to �nd the largest one, and put it

aside. Then look through all the remaining items to �nd the next largest,

and put it aside. Repeat this until all the items have been processed.

describes Selection Sort as a sequence of \phases." The goal of

the �rst phase is to �nd the largest item and \set it aside" by moving it to

the end of the list; the goal of the second phase is to �nd the second largest

item, and move it into position second from the end of the list; and so forth.

It is important to remember that the program can't just \look at all

the bars and pick the biggest one" in one step, as you can. It is restricted

to comparing two items at a time. To �nd the largest item in a list, the

computer searches through the list one item at a time, keeping track of the

largest item it has seen so far. After looking at every item in the list, it

knows which is the largest item overall, and it can then move it into position

at the end of the list.

There are �ve sorting algorithms altogether. They can be divided into

two groups. Bubble Sort, Selection Sort and Insertion Sort are fairly straight-
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Insertion Sort

Merge Sort

QuickSort
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forward, but they are relatively ine�cient except for small lists. Merge Sort

and QuickSort are more complicated, but also much faster for large lists.

You will need to look at Insertion Sort and Merge Sort in some detail for

the exercises at the end of the lab. You should also look at Bubble Sort

and QuickSort if you have time. (QuickSort is, on average, the fastest sort-

ing method available. Bubble Sort is the slowest. Bubble Sort is often the

�rst and sometimes the only sorting method that students learn.) Here are

brief descriptions of the remaining four sorting methods (but of course brief

descriptions are no substitute for watching them in action):

: The basic idea is to compare two neighboring items and,

if they are in the wrong order, swap them. The computer moves through the

list comparing and swapping. At the end of one pass, the largest item will

have \bubbled up" to the last position in the list. On the second pass, the

second largest item moves into position, and so forth.

: The basic idea is to take a sorted list and to insert a

new item into its proper position in the list. The new sorted list is one item

longer than the old list. You can start with a (trivially) sorted list of one

item and repeat this process until all items have been inserted into the sorted

list.

: The basic idea is that if you have two sorted lists, you can

easily \merge" them into one combined sorted list. Start with (trivially)

sorted lists of length one, merge them into sorted lists of length two, then

into lists of length four, then eight, and so on until all the items are in one

sorted list.

: The basic idea is \QuickSortStep," an operation that works

like this: Remove one item from the list. Then divide the remaining items

into two parts: items bigger than the removed item and items smaller than

the removed item. Move all the smaller items to the beginning of the list and

all the bigger items to the end, leaving one space in between for the item that

was removed at the beginning. Note that when that item is placed in that

empty space, it is in its correct �nal position. To �nish the sort, it is just

necessary to sort the smaller items to the left of it and, separately, to sort

the bigger items to the right. These two smaller sorting jobs can be done by

recursively applying QuickSort to each group of items. The great cleverness

of QuickSortStep is in the e�cient way in which it separates the smaller

from the bigger items in the list|but that is easier seen than described.

(See Figure 12.2)

Now that you understand how some

sorting algorithms work, the next step is to investigate how e�ciently lists

of items can be sorted. In this part of the lab, you will use the \timed"

mode of the program . To use this mode, choose one of the �rst two
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To get a feeling for how the program works, as well as for how the dif-

ferent sorting algorithms compare, try sorting arrays of various sizes using

xSortLab applying QuickSortStep to the full list of sixteen bars. One

item has been removed from the list and stored in Temp. A box encloses items that

have not yet been compared to Temp; as far as the program knows, Temp could

end up in any of the locations enclosed by the box. Items to the left of the box are

known to be smaller than Temp. Items to the right are known to be larger. Each

step shrinks the box by one location, moving an item from that location to the other

side of the box if necessary. In the end, there is only one location in the box, and

that is where Temp belongs.

commands in the menu. In this mode, the computer works behind the

scene to sort arrays of randomly generated numbers. (An is just a

numbered list of items; the of the array refers to the number of items in

the list.) The computer reports the amount of time it spent and, for speed

number 2, how many comparison and copy operations it performed. This

information will appear in the Log Window after the sort is completed.

At speed number 1 or 2, the Sort Window will contain an input box where

you can type the size of the arrays to be sorted. There is also a box where

you can type the number of arrays to sort. This is absolutely necessary for

small arrays, where the time it takes to sort a single array is a small fraction

of a second. Since measures times in , where each tick is 1/60

second, the only way to get an accurate idea of the sorting time for a small

array is to measure the total time to sort a large number of arrays, and then

to divide that total time by the number of arrays to get the average sorting

time for a single array. Even for larger arrays, you can get a more accurate

measurement of the sorting time by sorting several arrays and taking the

average time.
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Control

File

A table to be �lled in with data you collect for either Bubble Sort,

Selection Sort, or Insertion Sort. The value is the third column is measured by the

xSortLab program. The values in the third and fourth columns are to be computed

by you. The Running Time Per Array is obtained by dividing the Total Sorting

Time by the Number of Arrays.

Array

Size,

Number

of Arrays

Total

Sorting Time

Running Time

Per Array,
( )

(You might also want to try speed number 2, but that is not required for

this lab. On this speed setting, the computer spends most of its time counting

copies and comparisons, updating the screen, and checking to see whether

you have pressed Command-Period. At speed number 1, the computer does

none of these things; the time reported is the time it actually spends sorting

the arrays.)

various sorting algoritms. Before you begin, clear the Log Window, using

the appropriate command from the menu.

Set the speed to speed number 1 (Timed/Uninterruptible). Set the Array

Size to 10 and the Number Of Arrays to 1000. Click the Go button to perform

the sort, and do this for each sorting method. Check the results in the Log

Window. [Depending on the speed of your computer, you might want to

adjust the number of arrays; this is not supposed to take too long. On an

old Macintosh Plus, for example, you might want to divide the number of

arrays by 10. Use your judgment.]

Next, repeat the exercise with the Array Size set to 100 and the Number

Of Arrays set to 100 [or 10]. Apply each of the �ve sorting methods. Finally,

repeat the exercise again with Array Size set to 1000 and Number Of Arrays

set to 10 [or 1].

When you have �nished, print the Log Window using the command in the

menu. The printout should contain the results from �fteen experiments:

�ve sorting methods applied to each of three array sizes. You are asked to

turn in this printout as part of Exercise 4 at the end of the lab.
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Exercise 1:

Be careful to copy down any data you need

from the Log Window before sorting a very large array

A table to be �lled in with data you collect for either QuickSort or

Merge Sort. The value is the third column is measured by the xSortLab program.

The values in the fourth and �fth columns are to be computed by you. (In comput-

ing the �fth column, you can use either the common log or the natural log, ,

as long as you are consistent. Both types of log can be found on most calculators.)

Array

Size,

Number

of Arrays

Total

Sorting Time

Running Time

Per Array,
( log( ))

In the remainder of the lab, you will investigate two of the sorting algo-

rithms in greater detail.

For very large array sizes, use just one array. (Don't try to do arrays much

larger than 10,000, since it will take too long. On older computers, even

10,000 items might be too many.

, in case it takes too

long and you decide to abort the program.)

Choose one of the three methods Bubble Sort, Selection Sort, or Insertion

Sort. Gather data on sorting time for this algorithm on arrays of various

sizes, and use it to �ll in the table in Figure 12.3. (Or make a similar table

by hand.) The data in the last column of the table is for use in Exercise 6.

You can use the data you've already collected for arrays of size 10, 100 and

1000. You should collect data for other array sizes ranging from 2 to 10,000.

Finally, choose either Merge Sort or QuickSort, and gather data on sort-

ing time for arrays of various sizes. Use your data to �ll in the table in

Figure 12.4. (Or make a similar table by hand.) The data in the last column

of the table is for use in Exercise 7. Besides the data you've already collected

for arrays of size 10, 100 and 1000, you should collect data for other array

sizes ranging from 2 to 100,000 or more.

The basic idea in Insertion Sort is to insert an item into

its correct location in a sorted list. Describe Insertion Sort in more detail.

What is the exact sequence of phases it goes through when sorting a list of 16
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Exercise 2:

Exercise 3:

Exercise 4:

Exercise 5:

Exercise 6:

Exercise 7:

items? What sequence of steps does it go through to complete each phase?

(The information you need can be found by running .)

Suppose that Selection Sort is applied to the following list

of numbers. Show what the list will look like after each phase in the sort:

73 21 15 83 66 7 19 18

Suppose that Merge Sort is applied to the following list of

numbers. Show what the list will look like after each phase in the sort:

73 21 15 83 66 7 19 18 21 44 58 11 91 82 44 39

Turn in the printout of the Log Window that you were

asked to make. Add to it, in writing, your observations on the data it

contains.

Turn in tables, like those in Figures 12.3 and 12.4, showing

your measurements of sorting time for two sorting algorithms on arrays of

various sizes. One table should show times for Bubble Sort, Selection Sort

or Insertion Sort. The other should show times for Merge Sort or QuickSort.

Be sure to collect data for a wide variety of array sizes, as speci�ed earilier

in the lab. State the conclusions you draw from your data. How do the two

methods compare? What happens as the size of the array increases? (You

might want to present the data as a graph, as well as in tables.)

The �rst table that you turned in for Exercise 5 showed

running times for a ( ) algorithm. This means that the average running

time for an array of size is approximately for some constant , at

least for large values of . For more details, see Section 9.3 of

. (Note that depends on the computer you are using, as

well as the algorithm.) Thus, if the running time is , then the value of

is approximately , and this approximation tends to get better as gets

bigger. Use the data in your �rst table to estimate the value of for the

particular sorting method you used to generate the table. Once you have a

value for , use it to estimate how long it would take to sort an array of size

1,000,000 using that sorting method. Explain your reasoning.

The second table that you turned in for Exercise 5 showed

running times for a ( ) algorithm. This means that the average

running time for an array of size is approximately for some

constant , at least for large values of . Thus, if the running time is , then

the value of is approximately , and the approximation tends

to get better as gets bigger. Use the data in your second table to estimate

the value of for the particular sorting method you used to generate the

table. Once you have a value for , use it to estimate how long it would take

to sort an array of size 1,000,000 using that sorting method. Explain your
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reasoning. Comment on the comparison between the results of Exercises 6

and 7.
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A central processing unit executes a program

one step at a time, fetching each instruction from memory and executing it

before going on to the next instruction. In many cases, though, a problem

can be broken down into sub-problems that could be solved at the same time.

In , several CPUs work simultaneously on a problem,

each one solving a di�erent sub-problem. This is one of the major techniques

for speeding up the execution of programs.

Even when only one processor is available, it is sometimes natural to break

down a program into parts that can be executed simultaneously.

can be applied to divide the single processor's time among the various

parts of the program. The program won't be executed any more quickly, but

the use of parallel processing \abstractions" might make the program easier

to write.

In this lab, you will use the multitasking capabilities of the xTurtle pro-

gramming language. In this language, it is possible to split (or ) a

process into several processes that will all execute simultaneously and inde-

pendently. Each process will have its own turtle visible on the screen, so

you can actually see what is going on. Although you will be seeing only
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if

if then

else

end if
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xTurtle

Bugs
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fork

fork

fork

Bugs

ForkNumber

fork ForkNumber

ForkNumber

fork TellUser

fork

TellUser

ForkNumber

TwoTasks

ForkNumber

fork

ForkNumber

simulated parallel processing, it would be at least theoretically possible for

each process to run on its own CPU.

The background material for this lab is covered in Section 10.1 of

. It will be useful for you to read that material before

working on the lab.

Start up the program , and open the

�le . (You should �nd this �le and all the other �les for this lab in a

folder named .) Run the program. You will see ten turtles

wandering around on the screen. This is a very simple program, but it

illustrates the basic multiprocessing command in xTurtle, the statement.

The statement (10) causes a single process to split into ten processes.

Any commands in the program that follow the statement will be exe-

cuted by each process independently. In the program , each of the ten

processes goes into a loop that sends its turtle on a random walk. Exercise 1

at the end of the lab asks you to add a few modi�cations to this program.

When a process is forked, all of the processes that are created start out in

exactly the same state, with one small exception. The xTurtle language has a

prede�ned variable named . This is a read-only variable; that is,

you can test the value of this variable but you can't change its value. Each of

the processes created by a statement gets its own value for .

For the �rst process, the value of is 1, for the second it is 2, and

so forth. To test this, try executing the following commands by typing them

into the input box in the \xTurtle Graphics" window and then clicking on

the button:

(3) ( )

Make sure you understand what happens. (You will have to type both of

these commands on one line. If you execute \ (3)" by itself, three pro-

cesses will be created, but all three processes will \die" before you get a

chance to type in the next command. Then, when you execute the com-

mand \ ( )", you will just get a value

of zero|the default value of when no processes have been

forked.)

The �le contains a sample program illustrating one way in

which can be used. Open the �le and run the program that it

contains.

In this program, two processes are created with a command. Each

process then executes an statement of the form:

= 1

do one thing

do something else



�

Shared Variables:

Multitasking in xTurtle Lab 13, Page 3

declare
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fork
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fork
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More Tiling Examples Files for Lab 13

Circles

own

Circles Parallel Snowake

The �rst turtle, with a of 1, does one task while the second

turtle does another completely di�erent task. You are asked to do something

similar in Exercise 2 at the end of the lab.

The sample program uses in a di�erent

way, in statements such as \ (60 )". When the �rst turtle,

with a of 1, executes this command, it turns through 60 degrees;

the second turtle turns through 120 degrees; the third, 180 degrees; and so

forth. Even though every turtle executes the same command, they each do

something di�erent because each has a di�erent value of .

The program also shows that several statements

can be used in the same program. The �rst creates several processes.

Each of these processes splits into several new processes when it executes the

second statement. You should note that each command resets the

value of for all the processes it creates.

You can see two more examples of multiple commands in the sample

programs and . (The tiling program was written

by my colleague, Kevin Mitchell, who is interested in the mathematical prop-

erties of tilings. Several more of his tiling programs are included in the folder

inside the folder. They all produce

pretty pictures that would be more di�cult to make without multitasking.)

The sample program illustrates the fact that statements

that occur after a fork are treated just like other statements. That is, ev-

ery process executes the statement and creates its copy of the

variables that are declared. You will need to understand this program to do

Exercise 3.

By the way, you might want to use and to

investigate the e�ect of the option in the

menu. Try running these programs with the option turned o� as

well as with the option turned on. Remember that your computer, with its

single CPU, executes multiple processes by switching its attention from one

process to another, executing one process for a while, then moving on to the

next process, and so forth. When the option is on, it

devotes some random amount of time to a process before moving on to the

next. Therefore the processes quickly get \out of sync." When the option is

o�, the processes stay \in sync" because the computer devotes exactly the

same processing time to each process. Random scheduling is a more realistic

simulation of parallel processing, but equal-time scheduling can be prettier

to watch.

In all the examples you have seen so far, the

multiple processes are completely independent. The various turtles go about

their business without interacting with the other turtles in any way. (This
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angle

control

angle
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fork

is not quite true, since the turtles have to share the same screen. You might

have noticed that one turtle will sometimes wipe out the image of another

turtle temporarily.)

Things can get more interesting when the processes have to communicate

with each other. In xTurtle, processes communicate through

. When a variable is declared a command, there is only

one copy of that variable, which is shared by all the forked processes. If

any of those processes changes the value of the variable, then all the other

processes can see the new value. This is the only form of communication

between processes that can occur in xTurtle.

As explained in , great care must be taken

when shared variables are used for communication, so that one process does

not change the value of a variable while another process is using that value.

A process must obtain exclusive access to a shared variable while it is using

that variable. This is the problem. In xTurtle, the

statement is provided to make mutual exclusion possible. A statement

takes the form

Only one process at a time is allowed to \grab" a given variable. When

a process comes to a statement, the computer checks to see whether

another process has already grabbed the variable. If so, then the second

process must wait until the �rst process gets to the end of its statement.

Only then is the second process allowed to grab the variable and execute the

statements in its own statement.

The statements inside a statement are called a . As

long as access to shared variables is con�ned to critical regions, processes

can use the variables to communicate in relative safety.

Communication can still be very complicated, but a fairly straightforward

example is available in the sample �le . Open

this �le, read the comments, and run the program. You will see two turtles

executing identical random walks. One of the turtles selects a random angle

to be used in the random walk and records it in the shared variable .

The other turtle reads the value from the shared variable and uses it. A

second shared variable, , is used in a statement to control access

to . Exercise 4 asks you to modify this program so that more than two

processes are involved.

Another example of shared variables is given in the �le . Read

the comments and run the program. It will take a few seconds to run,

and you won't see anything happening until the end, when the program

reports the value that it has computed. This program also illustrates what

happens when a command is used inside a subroutine: At the end of
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Exercise 1:

if

Exercise 2:

Exercise 3:

Exercise 4:

six

Exercise 5:

Random

Scheduling in Forks

TellUser

Bugs

Bugs

RandomInt

KillProcess

KillProcess

DrawGraphs

fork

row col row col

Circles

Synchronized Random Walk

Sum of Squares

the subroutine, all the processes are \rejoined" into one process before the

subroutine terminates. Therefore, after the subroutine �nishes, there is only

one process to execute the statement. In Exercise 5, you will work

with a similar example.

(25)

(9)

1 + 2 + 3 + 4 + + 25

In the sample program , ten \bugs" wander around on

the screen. Real bugs, though, are born and die. Add \birth" and \death" to

the program. Add birth by programming a one-in-twenty-�ve chance

that a bug will split in two, each time it moves. (You can program a one-in-

twenty-�ve chance by checking = 1.) To program death,

you will need a new command: . When a process executes a

statement, it dies. (This is an easy exercise.)

The sample program draws the graphs of

two functions, one after the other. Modify this program so that the two

graphs are drawn simultaneously by two turtles. (This is even easier than

Exercise 1.)

Write a program that uses two statements to draw

a multiplication table like this one on the screen:

1 2 3 4 5 6 7 8 9

2 4 6 8 10 12 14 16 18

3 6 9 12 15 18 21 24 27

4 8 12 16 20 24 28 32 36

5 10 15 20 25 30 35 40 45

6 12 18 24 30 36 42 48 54

7 14 21 28 35 42 49 56 63

8 16 24 32 40 48 56 64 72

9 18 27 36 45 54 63 72 81

The entry in row number and column number is . Your

program will be similar in outline to the sample program . Recall

that if is a variable, then you can write the value of on the screen with

the command .

Modify the program so that

instead of showing two turtles moving in identical random walks, it shows

turtles moving in identical random walks.

The program is a failed attempt to write

a program that computes the value of the sum

Run the program several times. You will see|provided that the

option is turned o�|that it gives di�erent answers,
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grab

grab grab

none of them correct. Use a statement to �x the program so that

it gives the correct answer. Write a short essay explaining carefully what

goes wrong when the statement is omitted, and how adding the

statement �xes the problem.
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Images are often created on computers in a

two-step process. First, a of a scene is created, then the

scene is using realistic coloring and lighting e�ects. This lab deals

with the model-construction stage of image creation.

Complex geometric models are built up out of simpler components which

are scaled, rotated and positioned in the scene using

. Simple geometric shapes like circles and lines are used as a

starting point in the modeling process. These shapes can be combined to

form more complex �gures that can then be combined to form even more

complex scenes.

Scenes constructed from objects in this way can be used in a natural way

to produce . An animation is just a sequence of frames in which

objects move slightly from one frame to the next. When the frames are

quickly displayed one after the other, the viewer perceives objects in motion.

In this lab, you will use two programs, and , to

construct two-dimensional and three-dimensional geometric models. You will

also construct simple animations.
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Render

Control

Try this now. Another window, titled \Drawing Window," will appear,

with a small square drawn at the center.

The background for this lab is Section 11.1 in

, which covers geometric modeling, geometric transformations and the

basics of animation. Questions 11.1 and 11.2 in the text|and their answers

in the back of the book|are also relevant to this lab. You should be familiar

with this material before starting the lab.

To begin the

lab, start up the program . You will get a standard text-editing

window in which you can type a speci�cation of the scene you want to model.

The speci�cation is written in a |something

very much like a programming language. A scene description consists of a

list of objects in a scene, together with the geometric transformations to be

applied to them. It can also contain de�nitions of objects to be used later,

perhaps repeatedly, in the scene. Such object de�nitions are very much like

subroutines in a programming language.

For example, suppose you want a rather boring scene consisting of a single

square. You can specify this scene by typing the single word

in the text-edit window. To see the scene, use the command from

the menu.

The Drawing Window represents a region of the -plane with ranging

from 10 at the left edge of the window to 10 at the right and ranging

from 10 at the bottom to 10 at the top. The command speci�es a

one-by-one square, centered at (0,0), with corners at ( 0 5, 0 5), (0.5, 0.5),

(0.5,0.5) and ( 0.5,0.5).

Suppose you want a larger square, or a square at a di�erent position?

You have to start with a standard small, centered square and apply geometric

transformations to get the square you want. This is not the most obvious way

of doing things, but it turns out to be remarkably powerful and even, after

some experience, intuitive. The geometric transformations that you can use

are , and . Scaling changes an object's size.

Translation moves it. Rotation pivots it about the point (0,0) or about some

other speci�ed point.

To transform an object, simply list the transformation after the object

to which it applies. For example, the sequence of commands

speci�es three squares with di�erent transformations. In the �rst of these

commands, the transformation 5 magni�es the square by a factor of 5,
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square scale 3 rotate 30 translate 5,5

polygon 0,0 0,5 3,4

Here is a simple scene description. You will �nd a copy of this in the

�le Open the �le and render it. Then try modifying and

adding to it. You should try to get a feel for the basic objects and the

transformations that can be applied to them:

square scale

square scale

rotate

square rotate about

translate

xtranslate ytranslate

square xtranslate

circle

line

polygon

blackSquare

graySquare whiteSquare blackCircle grayCircle whiteCircle blackPolygon

grayPolygon whitePolygon whiteSquare

square

First Examples.

producing a �ve-by-�ve square. To shrink an object, you would use a scaling

operation with a factor less than 1, as for example in \ 0.5".

The scale command can also be used with two numbers. The �rst number

gives a horizontal scaling factor and the second a vertical scaling factor. For

example, \ 2,5" speci�es a rectangle that is 2 units wide and 5

units tall.

The transformation 45 pivots the square about the point (0,0)

through an angle of 45 degrees in a counterclockwise direction. A negative

angle would rotate an object in a clockwise direction. It is possible to specify

a di�erent pivot point. For example, \ 45 0.5,0.5" would

pivot the square about its upper right corner, (0.5,0.5), instead of (0,0).

In the third example, the transformation 3,7 moves the square

3 units to the left and 7 units up. (All commas in this and other examples are

optional, by the way; they can be included for human readability). There are

also commands and for moving an object horizontally

or vertically only. For example, \ 5" produces a square

translated �ve units to the right.

You can apply a sequence of transformations to the same object, simply

by listing them all after the object's name, in the order in which they are to

be applied. For example,

speci�es a square that is �rst magni�ed by a factor of 3, then rotated through

30 degrees, then translated 5 units horizontally and 5 units vertically.

There are other basic objects besides squares. A is a circle of

diameter one, centered at (0,0). A is a line of length one that extends

from the point ( 0 5,0) to (0.5,0). A can be speci�ed by listing its

vertices. For example,

speci�es a triangle with vertices at the points (0,0), (0,5) and (3,4). To make

things a bit more interesting, a few \�lled-in" versions of squares, circles and

polygons are also allowed. These are given by the commands ,

, , , , , ,

and . (The di�erence between a and

a plain is that the white square will hide objects behind it while the

plain square is transparent.)
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Simple Animation

animate

translate

scale rotate

First Animation

animate
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Speed

Save Frames to Memory Control

Control

Loop Back to Start Loop Back and Forth

graySquare scale 2 translate 5,5

blackCircle scale 5,2 rotate 30

square translate -5,5

polygon 0,0 0,5 3,4 translate -7,-7

animate 15

graycircle scale 1.5 ytranslate -2:2

whitepolygon -1,-1 1,-1 -1:1,1 scale 1:3

blacksquare scale 8,0.3 rotate 0:130

animate 15 25

square scale 0:5:8 rotate 0:0:90

circle scale 0::12

Open and render the �le . As the individual frames are

rendered, they are stored in the computer's memory so they will not have

to be redrawn later. Depending on the speed of your computer and the

complexity of the scene, the animation might run slowly until all the frames

have been rendered. After that, the playback rate can be controlled with

the menu. (There is only room in memory for a limited number of

frames; if you exceed that limit, you can still run the animation by turning

o� the option in the menu, but the

animation might then run unacceptably slowly.) This particular animation

will look better if you use the menu to change the playback style

from to . Try some of the

various menu commands. Try modifying the animation.

Let's face it, static scenes are not all that exciting.

Once we have animation, things get a lot more interesting. This is fairly

easy to do in and . Here is an example (which can

also be found in the �le ):

Any scene description that speci�es an animation must begin with the word

, followed by the number of frames in the animation. In this exam-

ple, 15 frames will be rendered. The remaining lines are a standard scene

description, except that in some cases \number ranges," such as 1:1 or

0:130, appear instead of single numbers. Where such a range appears, the

�rst value in the range is used in the �rst frame, the second value is used

in the last frame, and intermediate values are used in intermediate frames.

If a range is used with , the object moves during the animation; if

with , the object grows or shrinks; and if with , the object rotates

through a range of angles.

It is possible to write a \segmented animation," which is like two or more

simple animations spliced together. An example would be

Here, there are two segments, with 15 frames in the �rst and 25 in the second,

indicated by the two numbers listed after the word . Instead of simple
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de�ne

xModels-2D xModels-3D

wheel xModels-2D

square circle

Wagon

Houses

Model Building and Structured Complexity:

Three-Dimensional Modeling:

define wheel [

circle

line

line rotate 60

line rotate 120 ]

wheel scale 2 xtranslate -2.5

The �le contains an example in which wheels are de�ned and

used. Open the �le, read it, and render it to see what it looks like. Note

that the wheels on the wagon rotate.

number ranges like \0:5", double ranges like \0:5:8" are used instead. For

0:5:8, the value ranges from 0 to 5 during the �rst segment of the animation

and from 5 to 8 during the second. For 0:0:90, the value stays constant

at 0 during the �rst segment, then ranges from 0 to 90 during the second

segment. For the double range 0::12, the value ranges from 0 to 12 over the

entire animation. Try this if you want.

It's a

long way from simple geometric shapes to complex scenes. As usual, this

complexity is handled by tackling it level-by-level, with reasonable jumps in

complexity from one level to the next. In and , new

objects can be de�ned on one level that can then be used on higher levels.

An object de�nition takes the form of the word followed by a scene

description enclosed in square brackets (\[" and \]"). For example:

Once this de�nition has been made, a \wheel" can be used like any other

object. For example:

The word becomes part of the language of , on an equal

basis with and . It can even be used in the de�nitions of other

objects.

The sample �le gives another example of de�ning and using ob-

jects in a scene.

Models can be constructed

in three dimensions, as well as in two. Even for three-dimensional models,

of course, the image still has to be displayed on a two-dimensional computer

screen, but the model of the scene exists in three dimensions, at least in

our imagination and the computer's memory. Once you understand the

basic ideas of geometric modeling in two dimensions, the step up to three

dimensions is not so hard. Just remember that in addition to the and

-coordinates that you are used to, there is also a -coordinate. Think of

as measuring distance in front of the computer screen (or, if is negative,

behind it).
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View View

animate 30

square scale 5 yrotate 0:180

animate 30

square scale 5 ztranslate 8 yrotate 0:360

xModels-3D line circle square polygon

xModels-3D

cube

polygon 3D

xTranslate yTranslate zTranslate

translate Scale

xRotate yRotate zRotate rotate

zRotate

xModels-3D

The Most Complex Machine

yrotate xrotate zrotate

ztranslate

yrotate

xrotate xtranslate ztranslate

Flaps SpinningBows NestedSquares-3D

xModels-3D

xModels-2D

NestedSquares-3D

xModels-3D

lathe

extrude

The only way to understand all this is to look at some examples. Start

up the program . Type in the following simple scene description:

You will see the square rotate around its vertical axis. Note that the edge

of the square that is farther from you looks shorter, as it should. This is a

question of \three-dimensional viewing," which is explained in Section 11.1

in . (If you are familiar with that section, you

might want to play with the menu. Otherwise, leave the menu

set to its default value.) Try changing the to and to

to see the di�erent e�ects.

Next, try the following example, which illustrates a translation in the

direction:

The command moves the square 8 units forward towards you.

The command then sends it circling away from you and back. Try

instead. Also try instead of , and make sure you

understand what is going on.

The �les , and contain some other

examples for you to look at. Note especially that lets you de�ne

and use new objects, just as did. This is most striking in the

example .

The basic building blocks of three-dimensional models in the program

still include , , and , which exist in the

-plane but which can now be translated or rotated out of that plane. (The

�lled-in versions of these objects are not valid in .) There is also

a object, which represents a one-by-one-by-one cube centered at the

point (0,0,0). And there is which constructs polygons from a list

of three-dimensional points instead of two-dimensional points.

Three-dimensional translations include , ,

and plain old , which now requires three parameters. can

also take three parameters, giving magni�cation factors in the , and

directions. There are now three di�erent rotation commands, since an object

can be rotated about the horizontal -axis, about the vertical -axis, or about

the -axis that points directly at you out of the screen. The three rotation

commands are: , and . The command is still

available, but its e�ect is identical to .

There are two more commands in that can be used to easily

produce certain types of complicated objects. The commands are and

. These are standard operations in three-dimensional graphics. The

idea is similar in each case: a speci�ed �gure is copied several times, and
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Exercise 1: (a)

(b)

Exercise 2:

de-

�ne

Exercise 3:

animate 20

lathe 4 3,3 7,-3

yrotate 0:90

animate 30

extrude 2 -3,3 -2,3 0,-2 2,3 3,3 0,-4

yrotate 0:90

Type in the commands:

and render the image.

Next, as an example of extrusion, try the commands:

and render the image.

Use to draw �ve squares of di�erent sizes,

all with their centers at (0,0), nested inside one another. Starting from

your solution to part (a), construct an animation consisting of �ve squares

of various sizes rotating around their common center. They should rotate at

di�erent speeds. Some should rotate clockwise and some counterclockwise.

Turn in a printout or hand-listing of your scene description.

The �le contains an animation in which a circle

seems to bounce back and forth between two edges on a square. Try it.

Add a second circle bouncing between the other two edges, and then make

the square plus the two circles into an object by putting them inside a

command. Finally, make an animation that shows the combined object

rotating and changing size. What point does this illustrate about object

de�nitions?

Construct a three-dimensional wagon, using .

Its body and handle should be made from transformed cubes. It should have

the vertices of the copies are connected with line segments. For lathing, the

copies are obtained by rotating the original around the -axis. For extrusion,

the copies are obtained by translating the original in the -direction.

This is easy to understand if you see it.

You will see a truncated pyramid. If you change the

4 to a 12, you will see something that looks rather like a lampshade instead.

The �rst parameter of speci�es how many copies are to be made. (In

the example, this tells how many slanted edges there are: 4 for the pyramid,

12 for the lampshade.) The remaining parameters specify a sequence of one

or more line segments in the -plane, in this case the single line segment

from (3,3) to (7, 3). Try adding the point (10, 3) onto the command.

Again, the �rst parameter gives the number of copies

to be made. (Two is actually the most likely value for the parameter.) The

remaining parameters specify a polygon lying in the -plane. Copies of this

polygon are made, separated by a distance of one unit in the direction. In

this case, the result is a solid V-shaped �gure.

The sample �le has a rather neat example of the command.



Figure 14.1.

wagon xtranslate -10:10 yrotate 60 xrotate 15
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Exercise 4:

Exercise 5:

A \radio telescope" constructed using xModels-3D. The telescope is

shown from several di�erent viewpoints to give a better idea of its three-dimensional

structure.

four wheels. Try out your wagon in this animation:

Figure 14.1 shows a \radio telescope" that was constructed

with . This telescope is made of two pieces. The base can be

obtained by lathing a single line segment. The dish can be made by lathing

a curve|consisting of several line segments|that connects (0,0) to (4,2).

The dish has to be rotated and translated into position after it is created.

De�ne a \telescope" object in . Then create an animation that

shows three di�erent telescopes rotating about their axes.

Play with or until you make an

image you really like. Print out the image and turn it in.


